Publications by authors named "Jens Niewoehner"

There are few treatments that slow neurodegeneration in Alzheimer's disease (AD), and while therapeutic antibodies are being investigated in clinical trials for AD treatment, their access to the central nervous system is restricted by the blood-brain barrier. This study investigates a bispecific modular fusion protein composed of gantenerumab, a fully human monoclonal anti- amyloid-beta (Aβ) antibody under investigation for AD treatment, with a human transferrin receptor 1-directed Brainshuttle™ module (trontinemab; RG6102, INN trontinemab). , trontinemab showed a similar binding affinity to fibrillar Aβ and Aβ plaques in human AD brain sections to gantenerumab.

View Article and Find Full Text PDF

Mutations in glucocerebrosidase cause the lysosomal storage disorder Gaucher's disease and are the most common risk factor for Parkinson's disease. Therapies to restore the enzyme's function in the brain hold great promise for treating the neurological implications. Thus, we developed blood-brain barrier penetrant therapeutic molecules by fusing transferrin receptor-binding moieties to β-glucocerebrosidase (referred to as GCase-BS).

View Article and Find Full Text PDF

Esophageal cancer is associated with a dismal prognosis. The armamentarium of approved drugs is focused on chemotherapy with modest therapeutic benefit. Recently, checkpoint inhibitory monoclonal antibody Pembrolizumab was approved.

View Article and Find Full Text PDF

Background: The pathways that control protein transport across the blood-brain barrier (BBB) remain poorly characterized. Despite great advances in recapitulating the human BBB in vitro, current models are not suitable for systematic analysis of the molecular mechanisms of antibody transport. The gaps in our mechanistic understanding of antibody transcytosis hinder new therapeutic delivery strategy development.

View Article and Find Full Text PDF

Reducing Amyloid β (Aβ) in the brain is of fundamental importance for advancing the therapeutics for Alzheimer`s disease. The endogenous metallopeptidase neprilysin (NEP) has been identified as one of the key Aβ-degrading enzymes. Delivery of NEP to the brain by utilizing the Brain Shuttle (BS) transport system offers a promising approach for clearing central Aβ.

View Article and Find Full Text PDF

Purpose: Administration of therapeutic monoclonal antibodies (mAbs) is frequently accompanied by severe first infusion reactions (FIR). The mechanism driving FIR is still unclear. This study aimed to investigate the cellular and molecular mechanisms causing FIR in humanized mouse models and their potential for evaluating FIR risk in patients.

View Article and Find Full Text PDF

Receptors show promise for the transport of monoclonal antibodies (mAbs) across the blood-brain barrier. However, safety liabilities associated with peripheral receptor binding and Fc effector function have been reported. We present the Brain Shuttle-mAb (BS-mAb) technology, and we investigate the role of Fc effector function in vitro and in an Fcγ receptor (FcγR)-humanized mouse model.

View Article and Find Full Text PDF

Therapeutic approaches to fight Alzheimer's disease include anti-Amyloidβ (Aβ) antibodies and secretase inhibitors. However, the blood-brain barrier (BBB) limits the brain exposure of biologics and the chemical space for small molecules to be BBB permeable. The Brain Shuttle (BS) technology is capable of shuttling large molecules into the brain.

View Article and Find Full Text PDF

We have adapted an in vitro model of the human blood-brain barrier, the immortalized human cerebral microvascular endothelial cells (hCMEC/D3), to quantitatively measure protein transcytosis. After validating the receptor-mediated transport using transferrin, the system was used to measure transcytosis rates of antibodies directed against potential brain shuttle receptors. While an antibody to the insulin-like growth factor 1 receptor (IGF1R) was exclusively recycled to the apical compartment, the fate of antibodies to the transferrin receptor (TfR) was determined by their relative affinities at extracellular and endosomal pH.

View Article and Find Full Text PDF

Although biotherapeutics have vast potential for treating brain disorders, their use has been limited due to low exposure across the blood-brain barrier (BBB). We report that by manipulating the binding mode of an antibody fragment to the transferrin receptor (TfR), we have developed a Brain Shuttle module, which can be engineered into a standard therapeutic antibody for successful BBB transcytosis. Brain Shuttle version of an anti-Aβ antibody, which uses a monovalent binding mode to the TfR, increases β-Amyloid target engagement in a mouse model of Alzheimer's disease by 55-fold compared to the parent antibody.

View Article and Find Full Text PDF

Background: Thymic stromal lymphopoietin (TSLP) pathway blockade is a potential strategy for asthma treatment because the main activities of TSLP are activation of myeloid dendritic cells (mDCs) and modulation of cytokine production by mast cells. TSLP-activated mDCs prime the differentiation of naive T cells into inflammatory TH2 cells.

Objective: We sought to investigate mechanisms underlying the development of allergic lung inflammation in cynomolgus monkeys using gene expression profiling and to assess the effect of thymic stromal lymphopoietin receptor (TSLPR) blockade in this model.

View Article and Find Full Text PDF

The tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a multifunctional cytokine playing a key role in tissue regeneration and remodeling. Dysregulation of TWEAK signaling is involved in various pathological processes like autoimmune diseases and cancer. The unique interaction with its cognate receptor Fn14 makes both ligand and receptor promising targets for novel therapeutics.

View Article and Find Full Text PDF

Background: The aim of this study was to characterize the hCMEC/D3 cell line, an in vitro model of the human Blood Brain Barrier (BBB) for the expression of brain endothelial specific claudins-3 and -12.

Findings: hCMEC/D3 cells express claudins-3 and -12. Claudin-3 is distinctly localized to the TJ whereas claudin -12 is observed in the perinuclear region and completely absent from TJs.

View Article and Find Full Text PDF