The large xyloglucan endotransglycosylase/hydrolase (XTH) gene family continues to be the focus of much attention in studies of plant cell wall morphogenesis due to the unique catalytic functions of the enzymes it encodes. The XTH gene products compose a subfamily of glycoside hydrolase family 16 (GH16), which also comprises a broad range of microbial endoglucanases and endogalactanases, as well as yeast cell wall chitin/β-glucan transglycosylases. Previous whole-family phylogenetic analyses have suggested that the closest relatives to the XTH gene products are the bacterial licheninases (EC 3.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
January 2013
The group A streptococcus Streptococcus pyogenes is the causative agent of a wide spectrum of invasive infections, including necrotizing fasciitis, scarlet fever and toxic shock syndrome. In the context of its carbohydrate chemistry, it is interesting that S. pyogenes (in this work strain M1 GAS SF370) displays a spectrum of oligosaccharide-processing enzymes that are located in close proximity on the genome but that the in vivo function of these proteins remains unknown.
View Article and Find Full Text PDFThe molecular basis of primary wall extension endures as one of the central enigmas in plant cell morphogenesis. Classical cell wall models suggest that xyloglucan endo-transglycosylase activity is the primary catalyst (together with expansins) of controlled cell wall loosening through the transient cleavage and religation of xyloglucan-cellulose cross links. The genome of Arabidopsis (Arabidopsis thaliana) contains 33 phylogenetically diverse XYLOGLUCAN ENDO-TRANSGLYCOSYLASE/HYDROLASE (XTH) gene products, two of which were predicted to be predominant xyloglucan endohydrolases due to clustering into group III-A.
View Article and Find Full Text PDFThe ability of β-glucanases to cleave xyloglucans, a family of highly decorated β-glucans ubiquitous in plant biomass, has traditionally been overlooked in functional biochemical studies. An emerging body of data indicates, however, that a spectrum of xyloglucan specificity resides in diverse glycoside hydrolases from a range of carbohydrate-active enzyme families-including classic "cellulase" families. This chapter outlines a series of enzyme kinetic and product analysis methods to establish degrees of xyloglucan specificity and modes of action of glycosidases emerging from enzyme discovery projects.
View Article and Find Full Text PDFThe enzymatic degradation of plant polysaccharides is emerging as one of the key environmental goals of the early 21st century, impacting on many processes in the textile and detergent industries as well as biomass conversion to biofuels. One of the well known problems with the use of nonstarch (nonfood)-based substrates such as the plant cell wall is that the cellulose fibers are embedded in a network of diverse polysaccharides, including xyloglucan, that renders access difficult. There is therefore increasing interest in the "accessory enzymes," including xyloglucanases, that may aid biomass degradation through removal of "hemicellulose" polysaccharides.
View Article and Find Full Text PDFXyloglucan endotransglucosylase/hydrolases (XTHs) are cell wall enzymes that are able to graft xyloglucan chains to oligosaccharides or to other available xyloglucan chains and/or to hydrolyse xyloglucan chains. As they are involved in the modification of the load-bearing cell-wall components, they are believed to be very important in the regulation of growth and development. Given the large number (33) of XTH genes in Arabidopsis and the overlapping expression patterns, specific enzymic properties may be expected.
View Article and Find Full Text PDFReorganization and degradation of the wall crosslinking and seed storage polysaccharide xyloglucan by glycoside hydrolase family 16 (GH16) endo-transglycosylases and hydrolases are crucial to the growth of the majority of land plants, affecting processes as diverse as germination, morphogenesis, and fruit ripening. A high-resolution, three-dimensional structure of a nasturtium (Tropaeolum majus) endo-xyloglucanase loop mutant, TmNXG1-DeltaYNIIG, with an oligosaccharide product bound in the negative active-site subsites, has been solved by X-ray crystallography. Comparison of this novel complex to that of the strict xyloglucan endo-transglycosylase PttXET16-34 from hybrid aspen (Populus tremula x tremuloides), previously solved with a xylogluco-oligosaccharide bound in the positive subsites, highlighted key protein structures that affect the disparate catalytic activities displayed by these closely related enzymes.
View Article and Find Full Text PDFHigh-resolution, three-dimensional structures of the archetypal glycoside hydrolase family 16 (GH16) endo-xyloglucanases Tm-NXG1 and Tm-NXG2 from nasturtium (Tropaeolum majus) have been solved by x-ray crystallography. Key structural features that modulate the relative rates of substrate hydrolysis to transglycosylation in the GH16 xyloglucan-active enzymes were identified by structure-function studies of the recombinantly expressed enzymes in comparison with data for the strict xyloglucan endo-transglycosylase Ptt-XET16-34 from hybrid aspen (Populus tremula x Populus tremuloides). Production of the loop deletion variant Tm-NXG1-DeltaYNIIG yielded an enzyme that was structurally similar to Ptt-XET16-34 and had a greatly increased transglycosylation:hydrolysis ratio.
View Article and Find Full Text PDFThe plant cell wall is a complex material in which the cellulose microfibrils are embedded within a mesh of other polysaccharides, some of which are loosely termed "hemicellulose." One such hemicellulose is xyloglucan, which displays a beta-1,4-linked d-glucose backbone substituted with xylose, galactose, and occasionally fucose moieties. Both xyloglucan and the enzymes responsible for its modification and degradation are finding increasing prominence, reflecting both the drive for enzymatic biomass conversion, their role in detergent applications, and the utility of modified xyloglucans for cellulose fiber modification.
View Article and Find Full Text PDF