The catalytic aza-Michael addition is an important reaction within synthetic organic chemistry, given the significance of the biologically and synthetically interesting products, such as beta-amino acids and beta-lactams. In the last decade organocatalysis emerged as a powerful tool in asymmetric synthesis and had a large impact on the development of asymmetric and catalytic conjugate additions of nitrogen nucleophiles to Michael acceptors. In this review a first summary of the recent rapid progress of asymmetric organocatalyzed aza-Michael reactions is presented.
View Article and Find Full Text PDFCombination of enantioselective allylation reactions with a tandem hydroformylation-Fischer indole synthesis sequence as a highly diversity-oriented strategy for the synthesis of tryptamines and homologues was explored. This modular approach allows the substituents at C3 of the indole core, the type of the amine moiety, and the distance of the amine moiety to the indole core in the final synthetic step to be defined. The starting materials required for the hydroformylation step were synthesized via iridium catalyzed enantioselective allylic substitution reactions in high yields and excellent enantioselectivities.
View Article and Find Full Text PDF