Publications by authors named "Jens Lang"

The objective of investigating macroscopic polymer properties with a low computing cost and a high resolution has led to the development of efficient hybrid simulation tools. Systems generated from such simulation tools can fail in service if the effect of uncertainty of model inputs on its outputs is not accounted for. This work focuses on quantifying the effect of parametric uncertainty in our coarse-grained molecular dynamics-finite element coupling approach using uncertainty quantification.

View Article and Find Full Text PDF

Cryopreservation of genetically modified mouse lines prevents the loss of specific mutants that are of enormous scientific value for both basic and applied research. Cryopreservation of spermatozoa or preimplantation embryos enables discontinuation of breeding as well as archiving of specific lines for future studies. Regarding active inter-laboratory exchange of mutants, cryopreserved material is more advantageous to transport than live animals.

View Article and Find Full Text PDF

Understanding the pathophysiological processes of cartilage degradation requires adequate model systems to develop therapeutic strategies towards osteoarthritis (OA). Although different in vitro or in vivo models have been described, further comprehensive approaches are needed to study specific disease aspects. This study aimed to combine in vitro and in silico modeling based on a tissue-engineering approach using mesenchymal condensation to mimic cytokine-induced cellular and matrix-related changes during cartilage degradation.

View Article and Find Full Text PDF

Key parameters of a recently developed coarse-grained molecular dynamics-finite element coupling approach have been analyzed in the framework of uncertainty quantification (UQ). We have employed a polystyrene sample for the case study. The new hybrid approach contains several parameters which cannot be determined on the basis of simple physical arguments.

View Article and Find Full Text PDF