Publications by authors named "Jens Konrad"

Diabetes mellitus type 2 (DMT2) promotes Achilles tendon (AS) degeneration and exercise could modulate features of DMT2. Hence, this study investigated whether tenocytes of non DMT2 and DMT2 rats respond differently to normo- (NG) and hyperglycemic (HG) conditions in the presence of tumor necrosis factor (TNF)α or cyclic stretch. AS tenocytes, isolated from DMT2 (fa/fa) or non DMT2 (lean, fa/+) adult Zucker Diabetic Fatty (ZDF) rats, were treated with 10 ng/mL TNFα either under NG or HG conditions (1 g/L vs.

View Article and Find Full Text PDF

Concussion, caused by a rotational acceleration/deceleration injury mild enough to avoid structural brain damage, is insufficiently captured in recent preclinical models, hampering the relation of pathophysiological findings on the cellular level to functional and behavioral deficits. We here describe a novel model of unrestrained, single vs. repetitive concussive brain injury (CBI) in male C56Bl/6j mice.

View Article and Find Full Text PDF

Cell contractility regulates epithelial tissue geometry development and homeostasis. The underlying mechanobiological regulation circuits are poorly understood and experimentally challenging. We developed an elastomeric pillar cage (EPC) array to quantify cell contractility as a mechanoresponse of epithelial microtissues to substrate stiffness and topography.

View Article and Find Full Text PDF

In their natural environment, most cells and tissues are continuously exposed to cyclic mechanical strain. Sensing these stimuli by mechanosensory proteins and subsequent conversion into a variety of biological responses (referred to as mechanotransduction) are key processes for tissue homeostasis, survival, and differentiation. Perturbations of underlying signaling pathways lead to severe diseases in vivo (Urciuoli E, Peruzzi B, Int J Mol Sci 21(24).

View Article and Find Full Text PDF

The cellular mechanisms of basement membrane (BM) invasion remain poorly understood. We investigated the invasion-promoting mechanisms of actin cytoskeleton reorganization in BM-covered MCF10A breast acini. High-resolution confocal microscopy has characterized actin cell protrusion formation and function in response to tumor-resembling ECM stiffness and soluble EGF stimulation.

View Article and Find Full Text PDF

Basically, all mammalian tissues are constantly exposed to a variety of environmental mechanical signals. Depending on the signal strength, mechanics intervenes in a multitude of cellular processes and is thus capable of inducing simple cellular adaptations but also complex differentiation processes and even apoptosis. The underlying recognition typically depends on mechanosensitive proteins, which most often sense the mechanical signal for the induction of a cellular signaling cascade by changing their protein conformation.

View Article and Find Full Text PDF

Anterior cruciate ligament (ACL) ruptures are usually treated with autograft implantation to prevent knee instability. Tissue engineered ACL reconstruction is becoming promising to circumvent autograft limitations. The aim was to evaluate the influence of cyclic stretch on lapine (L) ACL fibroblasts on embroidered scaffolds with respect to adhesion, DNA and sulphated glycosaminoglycan (sGAG) contents, gene expression of ligament-associated extracellular matrix genes, such as type I collagen, decorin, tenascin C, tenomodulin, gap junctional connexin 43 and the transcription factor Mohawk.

View Article and Find Full Text PDF

Formation of a barrier capable of protecting tissue from external damage, chemical factors, and pathogens is one of the main functions of the epidermis. Furthermore, upon development and during aging, mechanoprotective epidermal functions change dramatically. However, comparative studies between embryonic and adult skin in comparison to skin equivalents are still scarce which is especially due to the lack of appropriate measurement systems with sufficient accuracy and long-term tissue compatibility.

View Article and Find Full Text PDF

Mechanical stress of ligaments varies; hence, ligament fibroblasts must adapt their expression profile to novel mechanomilieus to ensure tissue resilience. Activation of the mechanoreceptors leads to a specific signal transduction, the so-called mechanotransduction. However, with regard to their natural three-dimensional (3D) microenvironment cell reaction to mechanical stimuli during emigrating from a 3D spheroid culture is still unclear.

View Article and Find Full Text PDF

Tissue-engineered constructs have great potential in many intervention strategies. In order for these constructs to function optimally, they should ideally mimic the cellular alignment and orientation found in the tissues to be treated. Here we present a simple and reproducible method for the production of cell-laden pure fibrin micro-fibers with longitudinal topography.

View Article and Find Full Text PDF