Publications by authors named "Jens Jung Nielsen"

Purpose: The purpose of the present study was to investigate the health and exercise performance effects of street football training on very small pitches surrounded by boards in young habitually active men in comparison to small-sided football training on grass.

Methods: Thirty-nine habitually active men (30.7 ± 6.

View Article and Find Full Text PDF

Purpose: The purpose of the present controlled cross-sectional study was to investigate proximal femur and whole-body bone mineral density (BMD), as well as bone turnover profile, in lifelong trained elderly male football players and young elite football players compared with untrained age-matched men.

Methods: One hundred and forty healthy, non-smoking men participated in the study, including lifelong trained football players (FTE,  = 35) aged 65-80 years, elite football players (FTY,  = 35) aged 18-30 years, as well as untrained age-matched elderly (UE,  = 35) and young (UY,  = 35) men. All participants underwent a regional dual-energy X-ray Absorptiometry (DXA) scan of the proximal femur and a whole-body DXA scan to determine BMD.

View Article and Find Full Text PDF

The present study examined if high intensity training (HIT) could increase the expression of oxidative enzymes in fast-twitch muscle fibers causing a faster oxygen uptake (V˙O2) response during intense (INT), but not moderate (MOD), exercise and reduce the V˙O2 slow component and muscle metabolic perturbation during INT. Pulmonary V˙O2 kinetics was determined in eight trained male cyclists (V˙O2-max: 59 ± 4 (means ± SD) mL min(-1) kg(-1)) during MOD (205 ± 12 W ~65% V˙O2-max) and INT (286 ± 17 W ~85% V˙O2-max) exercise before and after a 7-week HIT period (30-sec sprints and 4-min intervals) with a 50% reduction in volume. Both before and after HIT the content in fast-twitch fibers of CS (P < 0.

View Article and Find Full Text PDF

The present study examined whether a marked reduction in oxygen delivery, unlike findings in moderate-intensity exercise, would slow leg oxygen uptake (Vo2) kinetics during intense exercise (86 ± 3% of incremental test peak power). Seven healthy males (26 ± 1 years, means ± SE) performed one-legged knee-extensor exercise (60 ± 3 W) for 4 min in a control setting (CON) and with arterial infusion of N(G)-monomethyl-l-arginine and indomethacin in the working leg to reduce blood flow by inhibiting formation of nitric oxide and prostanoids (double blockade; DB). In DB leg blood flow (LBF) and oxygen delivery during the first minute of exercise were 25-50% lower (P < 0.

View Article and Find Full Text PDF

The effect of oral caffeine ingestion on intense intermittent exercise performance and muscle interstitial ion concentrations was examined. The study consists of two studies (S1 and S2). In S1, 12 subjects completed the Yo-Yo intermittent recovery level 2 (Yo-Yo IR2) test with prior caffeine (6 mg/kg body wt; CAF) or placebo (PLA) intake.

View Article and Find Full Text PDF

ATP has been proposed to play multiple roles in local skeletal muscle blood flow regulation by inducing vasodilation and modulating sympathetic vasoconstrictor activity, but the mechanisms remain unclear. Here we evaluated the effects of arterial ATP infusion and exercise on leg muscle interstitial ATP and norepinephrine (NE) concentrations to gain insight into the interstitial and intravascular mechanisms by which ATP causes muscle vasodilation and sympatholysis. Leg hemodynamics and muscle interstitial nucleotide and NE concentrations were measured during 1) femoral arterial ATP infusion (0.

View Article and Find Full Text PDF

We studied the effect of an alteration from regular endurance to speed endurance training on muscle oxidative capacity, capillarization, as well as energy expenditure during submaximal exercise and its relationship to mitochondrial uncoupling protein 3 (UCP3) in humans. Seventeen endurance-trained runners were assigned to either a speed endurance training (SET; n = 9) or a control (Con; n = 8) group. For a 4-wk intervention (IT) period, SET replaced the ordinary training ( approximately 45 km/wk) with frequent high-intensity sessions each consisting of 8-12 30-s sprint runs separated by 3 min of rest (5.

View Article and Find Full Text PDF

The effect of dexamethasone on Na(+),K(+) pump subunit expression and muscle exchange of K(+) during exercise in humans was investigated. Nine healthy male subjects completed a randomized double blind placebo controlled protocol, with ingestion of dexamethasone (Dex: 2 x 2 mg per day) or placebo (Pla) for 5 days. Na(+),K(+) pump catalytic alpha1 and alpha2 subunit expression was approximately 17% higher (P < 0.

View Article and Find Full Text PDF

This study examined the effect of two different intense exercise training regimens on skeletal muscle ion transport systems, performance, and metabolic response to exercise. Thirteen subjects performed either sprint training [ST; 6-s sprints (n = 6)], or speed endurance training [SET; 30-s runs approximately 130% Vo(2 max), n = 7]. Training in the SET group provoked higher (P < 0.

View Article and Find Full Text PDF

Purpose: To examine the physiological response, reliability, and validity of the Yo-Yo intermittent recovery level 2 test (Yo-Yo IR2).

Methods: Thirteen normally trained male subjects carried out four Yo-Yo IR2 tests, an incremental treadmill test (ITT), and various sprint tests. Muscle biopsies and blood samples were obtained, and heart rate was measured before, during, and after the Yo-Yo IR2 test.

View Article and Find Full Text PDF

Skeletal muscle releases potassium during activity. Interstitial potassium accumulation is important for muscle function and the development of fatigue resulting from exercise. In the present study we used sodium citrate ingestion as a tool to investigate the relationship between interstitial H+ concentration and K+ accumulation during exercise.

View Article and Find Full Text PDF

Accumulation of K+ in skeletal muscle interstitium during intense exercise has been suggested to cause fatigue in humans. The present study examined interstitial K+ kinetics and fatigue during repeated, intense, exhaustive exercise in human skeletal muscle. Ten subjects performed three repeated, intense (61.

View Article and Find Full Text PDF

A rise in extracellular potassium concentration in human skeletal muscle may play an important role in development of fatigue during intense exercise. The aim of the present study was to examine the effect of intense intermittent training on muscle interstitial potassium kinetics and its relationship to the density of Na(+),K(+)-ATPase subunits and K(ATP) channels, as well as exercise performance, in human skeletal muscle. Six male subjects performed intense one-legged knee-extensor training for 7 weeks.

View Article and Find Full Text PDF

The study investigated the effect of training on lactate and H+ release from human skeletal muscle during one-legged knee-extensor exercise. Six subjects were tested after 7-8 wk of training (fifteen 1-min bouts at approximately 150% of thigh maximal O2 uptake per day). Blood samples, blood flow, and muscle biopsies were obtained during and after a 30-W exercise bout and an incremental test to exhaustion of both trained (T) and untrained (UT) legs.

View Article and Find Full Text PDF

In the present study we examined whether exercise and prostanoids have an effect on the muscle interstitial concentration of vascular endothelial growth factor (VEGF) and on the proliferative effect of muscle interstitial fluid. Dialysate from resting and exercising human skeletal muscle, obtained either during control conditions or during cyclooxygenase inhibition, was examined for its content of VEGF and for its effect on endothelial cell proliferation. Microdialysis probes with high (960 kDa) and low (5 kDa) molecular-mass cut-off membranes were placed in the vastus lateralis muscle of healthy young males.

View Article and Find Full Text PDF

Interstitial K+ ([K+]i) was measured in human skeletal muscle by microdialysis during exhaustive leg exercise, with (AL) and without (L) previous intense arm exercise. In addition, the reproducibility of the [K+]i determinations was examined. Possible microdialysis-induced rupture of the sarcolemma was assessed by measurement of carnosine in the dialysate, because carnosine is only expected to be found intracellularly.

View Article and Find Full Text PDF

The present study investigated the localization of ATP-sensitive K+ (KATP) channels in human skeletal muscle and the functional importance of these channels for human muscle K+ distribution at rest and during muscle activity. Membrane fractionation based on the giant vesicle technique or the sucrose-gradient technique in combination with Western blotting demonstrated that the KATP channels are mainly located in the sarcolemma. This localization was confirmed by immunohistochemical measurements.

View Article and Find Full Text PDF