A better understanding of the cellular and molecular mechanisms that are involved in skeletal muscle adaptation to exercise is fundamentally important to take full advantage of the enormous benefits that exercise training offers in disease prevention and therapy. The aim of this study was to elucidate the transcriptional signatures that distinguish the endurance-trained and untrained muscles in young adult males (24 ± 3.5 years).
View Article and Find Full Text PDFThe aim of this study was to investigate differences in skeletal muscle gene expression of highly trained endurance and strength athletes in comparison to untrained individuals at rest and in response to either an acute bout of endurance or strength exercise. Endurance (ET, = 8, VOmax 67 ± 9 mL/kg/min) and strength athletes (ST, = 8, 5.8 ± 3.
View Article and Find Full Text PDFBackground: Nonadherence to standard operating procedures (SOPs) during handling and processing of whole blood is one of the most frequent causes affecting the quality of serum and plasma. Yet, the quality of blood samples is of the utmost importance for reliable, conclusive research findings, valid diagnostics, and appropriate therapeutic decisions.
Methods: UHPLC-MS-driven nontargeted metabolomics was applied to identify biomarkers that reflected time to processing of blood samples, and a targeted UHPLC-MS analysis was used to quantify and validate these biomarkers.
Dietary administration of orotic acid (OA), an intermediate in the pyrimidine biosynthetic pathway, is considered to provide a wide range of beneficial effects, including cardioprotection and exercise adaptation. Its mechanisms of action, when applied extracellularly, however, are barely understood. In this study, we evaluated potential effects of OA on skeletal muscle using an in vitro contraction model of electrically pulse-stimulated (EPS) C2C12 myotubes.
View Article and Find Full Text PDFA substantial number of people at risk of developing type 2 diabetes could not improve insulin sensitivity by physical training intervention. We studied the mechanisms of this impaired exercise response in 20 middle-aged individuals at high risk of developing type 2 diabetes who performed 8 weeks of controlled cycling and walking training at 80% individual Vo2 peak. Participants identified as nonresponders in insulin sensitivity (based on the Matsuda index) did not differ in preintervention parameters compared with high responders.
View Article and Find Full Text PDFAcute physical exercise and repeated exercise stimuli affect whole-body metabolic and immunologic homeostasis. The aim of this study was to determine plasma protein profiles of trained (EET, n = 19) and untrained (SED, n = 17) individuals at rest and in response to an acute bout of endurance exercise. Participants completed a bicycle exercise test at an intensity corresponding to 80% of their VO2max.
View Article and Find Full Text PDFUnlabelled: Morphological and metabolic adaptations of the human skeletal muscle to exercise are crucial to improve performance and prevent chronic diseases and metabolic disorders. In this study we investigated human skeletal muscle protein composition in endurance trained (ET) versus untrained individuals (UT) and its modulation by an acute bout of endurance exercise. Participants were recruited based on their VO2max and subjected to a bicycle exercise test.
View Article and Find Full Text PDFJ Appl Physiol (1985)
August 2014
Intense exercise evokes a rapid and transient increase in circulating cell-free DNA (cf-DNA), a phenomenon that is commonly observed in a variety of acute and chronic inflammatory conditions. In this study, we aimed to shed new light on the release and clearance mechanisms of cf-DNA in response to exercise. We hypothesized that activated neutrophils may primarily contribute to exercise-evoked cf-DNA levels by releasing neutrophil extracellular traps (NETs).
View Article and Find Full Text PDFExhaustive exercise can interfere with immunity, causing transient immunosuppression and infections/inflammation in athletes. We used microarray technology to analyze the gene expression profiles of whole blood in short time (1h) LPS-stimulated and un-stimulated cultures drawn before, 30min after, 3h after and 24h after a half-marathon run. Four male and 4 female athletes participated.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
January 2014
Background: The current study aimed to investigate retinal function during exposure to normobaric hypoxia.
Methods: Standard Ganzfeld ERG equipment (Diagnosys LLC, Cambridge, UK) using an extended ISCEV protocol was applied to explore intensity-response relationship in dark- and light- adapted conditions in 13 healthy volunteers (mean age 25 ± 3 years). Baseline examinations were performed under atmospheric air conditions at 341 meters above sea level (FIO2 of 21 %), and were compared to hypoxia (FIO2 of 13.
Purpose: The capacity of whole blood cultures to produce cytokines in response to endotoxin (LPS) was studied in athletes before, 30 min after, 3 h after and 24 h after a half-marathon run.
Methods: Eight well trained men and 8 well trained women (6 of them in the late luteal phase of their cycle) participated. EDTA blood was incubated with or without LPS for 1 h, and cytokine concentration and gene expression were determined.
Background: Increased plasma concentrations of cell-free DNA (cf-DNA) are considered a hallmark of various clinical conditions. Despite intensive research in this field, limited data are available concerning the time course of release and clearance of cf-DNA in vivo.
Methods: We extracted cf-DNA from plasma samples taken before and immediately after a 10-km cross-country run, and from samples taken before, immediately after, and 30 min after exhaustive short-term treadmill exercise.