Background And Purpose: Investigating the cost-effectiveness of future mobile stroke unit (MSU) services with respect to local idiosyncrasies is essential for enabling large-scale implementation of MSU services. The aim of this study was to assess the cost-effectiveness for varying urban German settings and modes of operation.
Methods: Costs of different operating times together with different personnel configurations were simulated.
Chimeric antigen receptor (CAR)-redirected immune cells hold significant therapeutic potential for oncology, autoimmune diseases, transplant medicine, and infections. All approved CAR-T therapies rely on personalized manufacturing using undirected viral gene transfer, which results in nonphysiological regulation of CAR-signaling and limits their accessibility due to logistical challenges, high costs and biosafety requirements. Random gene transfer modalities pose a risk of malignant transformation by insertional mutagenesis.
View Article and Find Full Text PDFBackground And Purpose: Mobile stroke units (MSU) have been demonstrated to improve prehospital stroke care in metropolitan and rural regions. Due to geographical, social and structural idiosyncrasies of the German city of Mannheim, concepts of established MSU services are not directly applicable to the Mannheim initiative. The aim of the present analysis was to identify major determinants that need to be considered when initially setting up a local MSU service.
View Article and Find Full Text PDFPatient-derived xenograft (PDX) tumor models are essential for identifying new biomarkers, signaling pathways and novel targets, to better define key factors of therapy response and resistance mechanisms. Therefore, this study aimed at establishing pancreas carcinoma (PC) PDX models with thorough molecular characterization, and the identification of signatures defining responsiveness toward drug treatment. In total, 45 PC-PDXs were generated from 120 patient tumor specimens and the identity of PDX and corresponding patient tumors was validated.
View Article and Find Full Text PDFUnlabelled: Chimeric antigen receptor (CAR)-reprogrammed immune cells hold significant therapeutic potential for oncology, autoimmune diseases, transplant medicine, and infections. All approved CAR-T therapies rely on personalized manufacturing using undirected viral gene transfer, which results in non-physiological regulation of CAR-signaling and limits their accessibility due to logistical challenges, high costs and biosafety requirements. Here, we propose a novel approach utilizing CRISPR-Cas gene editing to redirect T cells and natural killer (NK) cells with CARs.
View Article and Find Full Text PDFEndogenous peptide inhibitor for CXCR4 (EPI-X4) is a CXCR4 antagonist with potential for cancer therapy. It is a processed fragment of serum albumin from the hemofiltrate of dialysis patients. This study reports the efficacy of fifteen EPI-X4 derivatives in pancreatic cancer and lymphoma models.
View Article and Find Full Text PDFPurpose: Since glioma therapy is currently still limited until today, new treatment options for this heterogeneous group of tumours are of great interest. Eukaryotic initiation factors (eIFs) are altered in various cancer entities, including gliomas. The purpose of our study was to evaluate the potential of eIFs as novel targets in glioma treatment.
View Article and Find Full Text PDFAim: Chemoresistance is a major cause of treatment failure in colorectal cancer (CRC) therapy. In this study, the impact of the IGF2BP family of RNA-binding proteins on CRC chemoresistance was investigated using in silico, in vitro, and in vivo approaches.
Methods: Gene expression data from a well-characterized cohort and publicly available cross-linking immunoprecipitation sequencing (CLIP-Seq) data were collected.
Glioblastoma (GBM) heterogeneity, aggressiveness and infiltrative growth drastically limit success of current standard of care drugs and efficacy of various new therapeutic approaches. There is a need for new therapies and models reflecting the complex biology of these tumors to analyze the molecular mechanisms of tumor formation and resistance, as well as to identify new therapeutic targets. We established and screened a panel of 26 patient-derived subcutaneous (s.
View Article and Find Full Text PDFRenal cell carcinoma (RCC) is a kidney cancer with an onset mainly during the sixth or seventh decade of the patient's life. Patients with advanced, metastasized RCC have a poor prognosis. The majority of patients develop treatment resistance towards Standard of Care (SoC) drugs within months.
View Article and Find Full Text PDFBackground: The metastasis inducing gene MACC1 is a prognostic and predictive biomarker for metastasis in several cancers. Its mechanism of inducing metastasis includes the transcriptional control of other cancer-related target genes. Here, we investigate the interplay with the metastasis driver S100P in CRC progression.
View Article and Find Full Text PDFNon-small cell lung cancer (NSCLC) is commonly diagnosed at advanced stages limiting treatment options. Although, targeted therapy has become integral part of NSCLC treatment therapies often fail to improve patient's prognosis. Based on previously published criteria for selecting drug combinations for overcoming resistances, NSCLC patient-derived xenograft (PDX) tumors were treated with a low dose combination of cabozantinib, afatinib, plerixafor and etoricoxib.
View Article and Find Full Text PDFThe current standard therapies for advanced, recurrent or metastatic colon cancer are the 5-fluorouracil and oxaliplatin or irinotecan schedules (FOxFI) +/- targeted drugs cetuximab or bevacizumab. Treatment with the FOxFI cytotoxic chemotherapy regimens causes significant toxicity and might induce secondary cancers. The overall low efficacy of the targeted drugs seen in colon cancer patients still is hindering the substitution of the chemotherapy.
View Article and Find Full Text PDFThe COSMIC database (version 94) lists 576 genes in the Cancer Gene Census which have a defined function as drivers of malignancy (oncogenes) or as tumour suppressors (Tier 1). In addition, there are 147 genes with similar functions, but which are less well characterised (Tier 2). Furthermore, next-generation sequencing projects in the context of precision oncology activities are constantly discovering new ones.
View Article and Find Full Text PDFIn cancer research, availability of clinically relevant tumor models is still essential for drug testing, proof of concept studies, and also molecular analyses. To achieve this, models are of advantage, which more closely reflect heterogeneity of tumors. In this regard, patient-derived xenograft (PDX) models more closely recapitulate the native tumor biology, tissue composition, and molecular characteristics.
View Article and Find Full Text PDFIn colorectal cancer (CRC), the prevalence of NRAS mutations (5-9%) is inferior to that of KRAS mutations (40-50%). NRAS mutations feature lately during tumour progression and drive resistance to anti-EGFR therapy in KRAS wild-type tumours. To elucidate specific functions of NRAS mutations in CRC, we expressed doxycycline-inducible G12D and Q61K mutations in the CRC cell line Caco-2.
View Article and Find Full Text PDFHere we sought metabolic alterations specifically associated with MYCN amplification as nodes to indirectly target the MYCN oncogene. Liquid chromatography-mass spectrometry-based proteomics identified seven proteins consistently correlated with MYCN in proteomes from 49 neuroblastoma biopsies and 13 cell lines. Among these was phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in de novo serine synthesis.
View Article and Find Full Text PDFPatient-derived xenograft (PDX) tumor models represent a valuable platform for identifying new biomarkers and novel targets, to evaluate therapy response and resistance mechanisms. This study aimed at establishment, characterization and therapy testing of colorectal carcinoma-derived PDX. We generated 49 PDX and validated identity between patient tumor and corresponding PDX.
View Article and Find Full Text PDFDespite recent advances, the treatment of head and neck squamous cell carcinoma (HNSCC) remains an area of high unmet medical need. HNSCC is frequently associated with either amplification or mutational changes in the PI3K pathway, making PI3K an attractive target particularly in cetuximab-resistant tumors. Here, we explored the antitumor activity of the selective, pan-class I PI3K inhibitor copanlisib with predominant activity towards PI3Kα and δ in monotherapy and in combination with cetuximab using a mouse clinical trial set-up with 33 patient-derived xenograft (PDX) models with known HPV and PI3K mutational status and available data on cetuximab sensitivity.
View Article and Find Full Text PDFThe standard procedure for blood glucose measurements is enzymatic testing. This method is cheap, but requires small samples of open blood with direct contact to the test medium. In principle, NMR provides non-contact analysis of body fluids, but high-field spectrometers are expensive and cannot be easily utilized under clinical conditions.
View Article and Find Full Text PDFWe have previously demonstrated that loss of the tumor suppressive activity of ribosomal protein (RP) RPL22 predisposes to development of leukemia in mouse models and aggressive disease in human patients; however, the role of RPL22 in solid tumors, specifically colorectal cancer (CRC), had not been explored. We report here that RPL22 is either deleted or mutated in 36% of CRC and provide new insights into its mechanism of action. Indeed, Rpl22 inactivation causes the induction of its highly homologous paralog, RPL22L1, which serves as a driver of cell proliferation and anchorage-independent growth in CRC cells.
View Article and Find Full Text PDFOrganoid cultures derived from colorectal cancer (CRC) samples are increasingly used as preclinical models for studying tumor biology and the effects of targeted therapies under conditions capturing in vitro the genetic make-up of heterogeneous and even individual neoplasms. While 3D cultures are initiated from surgical specimens comprising multiple cell populations, the impact of tumor heterogeneity on drug effects in organoid cultures has not been addressed systematically. Here we have used a cohort of well-characterized CRC organoids to study the influence of tumor heterogeneity on the activity of the KRAS/MAPK-signaling pathway and the consequences of treatment by inhibitors targeting EGFR and downstream effectors.
View Article and Find Full Text PDF