Van der Waals (vdW) heterostructures combining layered ferromagnets and other 2D crystals are promising building blocks for the realization of ultracompact devices with integrated magnetic, electronic, and optical functionalities. Their implementation in various technologies depends strongly on the development of a bottom-up scalable synthesis approach allowing for realizing highly uniform heterostructures with well-defined interfaces between different 2D-layered materials. It is also required that each material component of the heterostructure remains functional, which ideally includes ferromagnetic order above room temperature for 2D ferromagnets.
View Article and Find Full Text PDFSci Technol Adv Mater
February 2015
Multiferroics, materials in which both magnetic and electric fields can induce each other, resulting in a magnetoelectric response, have been attracting increasing attention, although the induced magnetic susceptibility and dielectric constant are usually small and have typically been reported for low temperatures. The magnetoelectric response usually depends on -electrons of transition metals. Here we report that in [(GeTe)(SbTe) ] superlattice films (where and are integers) with topological phase transition, strong magnetoelectric response may be induced at temperatures above room temperature when the external fields are applied normal to the film surface.
View Article and Find Full Text PDFSemiconductor-ferromagnet GaAs-Fe3Si core-shell nanowires were grown by molecular beam epitaxy and analyzed by scanning and transmission electron microscopy, X-ray diffraction, Mössbauer spectroscopy, and magnetic force microscopy. We obtained closed and smooth Fe3Si shells with a crystalline structure that show ferromagnetic properties with magnetizations along the nanowire axis (perpendicular to the substrate). Such nanobar magnets are promising candidates to enable the fabrication of new forward-looking devices in the field of spintronics and magnetic recording.
View Article and Find Full Text PDFWe present a low-temperature-grown GaAs device that combines the features of mode locking and photoconductive switching. The mode-locking mechanism is based on intensity-dependent defocusing. Additionally, the generated carriers produce an electrical signal in the biased switch geometry.
View Article and Find Full Text PDF