This chapter surveys the use of fixed-parameter algorithms in phylogenetics. A central computational problem in this field is the construction of a likely phylogeny (genealogical tree) for a set of species based on observed differences in the phenotype, differences in the genotype, or given partial phylogenies. Ideally, one would like to construct so-called perfect phylogenies, which arise from an elementary evolutionary model, but in practice one must often be content with phylogenies whose "distance from perfection" is as small as possible.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
November 2006
Contact maps are a model to capture the core information in the structure of biological molecules, e.g., proteins.
View Article and Find Full Text PDFAssociation studies in populations relate genomic variation among individuals with medical condition. Key to these studies is the development of efficient and affordable genotyping techniques. Generic genotyping assays are independent of the target SNPs and offer great flexibility in the genotyping process.
View Article and Find Full Text PDFBioinformatics
September 2005
With breakpoint distance, the genome rearrangement field delivered one of the currently most popular measures in phylogenetic studies for related species. Here, BREAKPOINT MEDIAN, which is NP-complete already for three given species (whose genomes are represented as signed orderings), is the core basic problem. For the important special case of three species, approximation (ratio 7/6) and exact heuristic algorithms were developed.
View Article and Find Full Text PDF