Chemical wave patterns and V-oxide redistribution in catalytic methanol oxidation on a VO/Rh(110) surface have been investigated in the 10 mbar range with low-energy electron microscopy (LEEM) and micro spot low-energy electron diffraction (micro-LEED) as in situ methods. V coverages of θ=0.2 and 0.
View Article and Find Full Text PDFWe have used low-energy electron microscopy (LEEM), micro-illumination low-energy electron diffraction (µLEED) supported by ab initio calculations, and X-ray absorption spectroscopy (XAS) to investigate in-situ and in real-time the structural properties of SmO deposits grown on Ru(0001), a rare-earth metal oxide model catalyst. Our results show that samarium oxide grows in a hexagonal A-SmO phase on Ru(0001), exhibiting a (0001) oriented-top facet and (113) side facets. Upon annealing, a structural transition from the hexagonal to cubic phase occurs, in which the Sm cations exhibit the +3 oxidation state.
View Article and Find Full Text PDFIn the present work we investigate the growth of monolayer MoSe on selenium-intercalated graphene on Ru(0001), a model layered heterostructure combining a transition metal dichalcogenide with graphene, using low energy electron microscopy and micro-diffraction. Real-time observation of MoSe on graphene growth reveals the island nucleation dynamics at the nanoscale. Upon annealing, larger islands are formed by sliding and attachment of multiple nanometer-sized MoSe flakes.
View Article and Find Full Text PDFLow-energy electron microscopy (LEEM) taken as intensity-voltage (I-V) curves provides hyperspectral images of surfaces, which can be used to identify the surface type, but are difficult to analyse. Here, we demonstrate the use of an algorithm for factorizing the data into spectra and concentrations of characteristic components (FSC ) for identifying distinct physical surface phases. Importantly, FSC is an unsupervised and fast algorithm.
View Article and Find Full Text PDFVanadium dioxide (VO) features a pronounced, thermally-driven metal-to-insulator transition at 340 K. Employing epitaxial stress on rutile [Formula: see text] substrates, the transition can be tuned to occur close to room temperature. Striving for applications in oxide-electronic devices, the lateral homogeneity of such samples must be considered as an important prerequisite for efforts towards miniaturization.
View Article and Find Full Text PDFThe adoption of graphene in electronics, optoelectronics, and photonics is hindered by the difficulty in obtaining high-quality material on technologically relevant substrates, over wafer-scale sizes, and with metal contamination levels compatible with industrial requirements. To date, the direct growth of graphene on insulating substrates has proved to be challenging, usually requiring metal-catalysts or yielding defective graphene. In this work, a metal-free approach implemented in commercially available reactors to obtain high-quality monolayer graphene on c-plane sapphire substrates via chemical vapor deposition is demonstrated.
View Article and Find Full Text PDFThe work is focused on understanding the dynamics of the processes which occur at the interface between ceria and platinum during redox processes, by investigating an inverse catalytic model system made of ceria epitaxial islands and ultrathin films supported on Pt(111). The evolution of the morphology, structure and electronic properties is analyzed in real-time during reduction and oxidation, using low-energy electron microscopy and spatially resolved low-energy electron diffraction. The reduction is induced using different methods, namely thermal treatments in ultra-high vacuum and in H as well as deposition of Ce on the oxide surface, while re-oxidation is obtained by exposure to oxygen at elevated temperature.
View Article and Find Full Text PDFCerium oxide is often applied in today's catalysts due to its remarkable oxygen storage capacity. The changes in stoichiometry during reaction are linked to structural modifications, which in turn affect its catalytic activity. We present a real-time in situ study of the structural transformations of cerium oxide particles on ruthenium(0001) at high temperatures of 700 °C in ultra-high vacuum.
View Article and Find Full Text PDFProper consideration of length-scales is critical for elucidating active sites/phases in heterogeneous catalysis, revealing chemical function of surfaces and identifying fundamental steps of chemical reactions. Using the example of ceria thin films deposited on the Cu(111) surface, we demonstrate the benefits of multi length-scale experimental framework for understanding chemical conversion. Specifically, exploiting the tunable sampling and spatial resolution of photoemission electron microscopy, we reveal crystal defect mediated structures of inhomogeneous copper-ceria mixed phase that grow during preparation of ceria/Cu(111) model systems.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2017
The growth, morphology, structure, and stoichiometry of ultrathin praseodymium oxide layers on Ru(0001) were studied using low-energy electron microscopy and diffraction, photoemission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. At a growth temperature of 760 °C, the oxide is shown to form hexagonally close-packed (A-type) PrO(0001) islands that are up to 3 nm high. Depending on the local substrate step density, the islands either adopt a triangular shape on sufficiently large terraces or acquire a trapezoidal shape with the long base aligned along the substrate steps.
View Article and Find Full Text PDFWe have studied (001) surface terminated cerium oxide nanoparticles grown on a ruthenium substrate using physical vapor deposition. Their morphology, shape, crystal structure, and chemical state are determined by low-energy electron microscopy and micro-diffraction, scanning probe microscopy, and synchrotron-based X-ray absorption spectroscopy. Square islands are identified as CeO2 nanocrystals exhibiting a (001) oriented top facet of varying size; they have a height of about 7 to 10 nm and a side length between about 50 and 500 nm, and are terminated with a p(2 × 2) surface reconstruction.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2016
We have studied the oxidation of the Ru(0001) surface by in situ microscopy during exposure to NO2, an efficient source of atomic oxygen, at elevated temperatures. In a previous investigation [Flege et al., Phys.
View Article and Find Full Text PDFThe structural modification of the Ru(0001) surface is followed in real-time using low-energy electron microscopy at elevated temperatures during exposure to molecular oxygen. We observe the nucleation and growth of three different RuO2 facets, which are unambiguously identified by single-domain microspot low-energy electron diffraction (μLEED) analysis from regions of 250 nm in diameter. Structural identification is then pushed to the true nanoscale by employing very-low-energy electron reflectivity spectra R(E) from regions down to 10 nm for structural fingerprinting of complex reactions such as the oxidation of metal surfaces.
View Article and Find Full Text PDFWe present an extensive mesoscale study of the initial gas phase oxidation of Ru(0001), employing in situ low-energy electron microscopy (LEEM), micro low-energy electron diffraction (μ-LEED) and scanning tunneling microscopy (STM). The initial oxidation was investigated in a temperature range of 500-800 K at a constant oxygen pressure of p(O2) = 4 × 10(-5) mbar. Depending to the preparation temperature a dramatic change of the growth morphology of the RuO2 film was observed.
View Article and Find Full Text PDFThree different methods to determine the oxide-phase concentration in mixed cerium oxide by hard X-ray photoelectron spectroscopy are applied and quantitatively compared. Synchrotron-based characterization of the O 1s region was used as a benchmark to introduce a method based on the weighted superposition of the Ce 3d spectra of the pure Ce(3+) and Ce(4+) phases, which was shown to lead to reliable and highly accurate determination of the mean oxidation state in mixed cerium oxides. The results obtained reveal a linear relation between the third distinct final state (u''') satellite peak intensity of the Ce(4+) phase and the Ce(4+) concentration by proper inclusion of Ce(3+)-related plasmon satellite peaks, which contradicts previous claims of nonlinear behavior.
View Article and Find Full Text PDFWe investigate the oxidation of, and the reaction of ethylene with, Ni(111) with and without sub-monolayer Ag adlayers as a function of temperature. The addition of Ag to Ni(111) is shown to enhance the activity towards the ethylene epoxidation reaction, and increase the temperature at which ethylene oxide is stable on the surface. We present a systematic study of the formation of chemisorbed oxygen on the Ag-Ni(111) surfaces and correlate the presence and absence of O(1-) and O(2-) surface species with the reactivity towards ethylene.
View Article and Find Full Text PDF