Miniaturized imaging systems combining an ultra-compact form factor in combination with the ability of refocusing and depth imaging have gained much interest in the field of mobile imaging. Therefore, artificial compound eye cameras are an extremely promising approach for the realization of compact monolithic camera modules on wafer level. Up to now, their imaging performance was limited to low resolution in the range of VGA format according to fabrication constrains given by the established microoptical fabrication methods, namely the reflow of photoresist.
View Article and Find Full Text PDFArtificial compound eye cameras are an attractive approach to generate imaging systems of maximum miniaturization. Their thickness can be reduced by a factor of two in comparison to miniaturized single aperture cameras with the same pixel size and resolution. The imaging performance of these systems can be improved significantly by the use of micro-optical refractive freeform arrays (RFFA).
View Article and Find Full Text PDFWe designed, fabricated, and characterized three-level transmission gratings in the resonance domain with reduced shadowing losses based on a three-wave interference mechanism. A new technological approach allows for fabrication of homogeneous and large area multilevel gratings without spurious artifacts. To our knowledge, the measured efficiency of 86% exhibits the largest value yet reported for a multilevel transmission grating in the resonance domain close to normal incidence.
View Article and Find Full Text PDF