Publications by authors named "Jens Bunt"

Biallelic recurrent loss of function mutations in , a novel open reading frame, underlie Temtamy syndrome (TS)-a neurodevelopmental disorder characterized by dysgenesis of the corpus callosum, epilepsy, and severe intellectual disability. Investigate the function of this gene, we used a knockout (KO) mouse model of its murine ortholog, . KO mice exhibit the characteristic phenotypic features seen in human TS patients, including increased epileptiform activity.

View Article and Find Full Text PDF

Personalised nanomedicine is an advancing field which has developed significant improvements for targeting therapeutics to aggressive cancer and with fewer side effects. The treatment of gliomas such as glioblastoma (or other brain tumours), with nanomedicine is complicated by a commonly poor accumulation of drugs in tumour tissue owing to the partially intact blood-brain barrier (BBB). Nonetheless, the BBB becomes compromised following surgical intervention, and gradually with disease progression.

View Article and Find Full Text PDF

Pediatric neoplasms in the central nervous system (CNS) are the leading cause of cancer-related deaths in children. Recent developments in molecular analyses have greatly contributed to a more accurate diagnosis and risk stratification of CNS tumors. Additionally, sequencing studies have identified various, often entity specific, tumor-driving events.

View Article and Find Full Text PDF

Corpus callosum dysgenesis (CCD) is a congenital disorder that incorporates either partial or complete absence of the largest cerebral commissure. Remodelling of the interhemispheric fissure (IHF) provides a substrate for callosal axons to cross between hemispheres, and its failure is the main cause of complete CCD. However, it is unclear whether defects in this process could give rise to the heterogeneity of expressivity and phenotypes seen in human cases of CCD.

View Article and Find Full Text PDF

Nuclear factor one (NFI) transcription factors are implicated in both brain development and cancer in mice and humans and play an essential role in glial differentiation. NFI expression is reduced in human astrocytoma samples, particularly those of higher grade, whereas over-expression of NFI protein can induce the differentiation of glioblastoma cells within human tumour xenografts and in glioblastoma cell lines in vitro. These data indicate that NFI proteins may act as tumour suppressors in glioma.

View Article and Find Full Text PDF

Increasing accumulation and retention of nanomedicines within tumor tissue is a significant challenge, particularly in the case of brain tumors where access to the tumor through the vasculature is restricted by the blood-brain barrier (BBB). This makes the application of nanomedicines in neuro-oncology often considered unfeasible, with efficacy limited to regions of significant disease progression and compromised BBB. However, little is understood about how the evolving tumor-brain physiology during disease progression affects the permeability and retention of designer nanomedicines.

View Article and Find Full Text PDF

Corpus callosum dysgenesis (CCD) describes a collection of brain malformations in which the main fiber tract connecting the two hemispheres is either absent (complete CCD, or 'agenesis of the corpus callosum') or reduced in size (partial CCD). Humans with these neurodevelopmental disorders have a wide range of cognitive outcomes, including seemingly preserved features of interhemispheric communication in some cases. However, the structural substrates that could underlie this variability in outcome remain to be fully elucidated.

View Article and Find Full Text PDF

De novo germline mutations in the RNA helicase DDX3X account for 1%-3% of unexplained intellectual disability (ID) cases in females and are associated with autism, brain malformations, and epilepsy. Yet, the developmental and molecular mechanisms by which DDX3X mutations impair brain function are unknown. Here, we use human and mouse genetics and cell biological and biochemical approaches to elucidate mechanisms by which pathogenic DDX3X variants disrupt brain development.

View Article and Find Full Text PDF

Introduction: Malignant astrocytomas are composed of heterogeneous cell populations. Compared to grade IV glioblastoma, low-grade astrocytomas have more differentiated cells and are associated with a better prognosis. Therefore, inducing cellular differentiation to alter the behaviour of high-grade astrocytomas may serve as a therapeutic strategy.

View Article and Find Full Text PDF

The nuclear factor one (NFI) site-specific DNA-binding proteins represent a family of transcription factors that are important for the development of multiple organ systems, including the brain. During brain development in mice, the expression patterns of Nfia, Nfib, and Nfix overlap, and knockout mice for each of these exhibit overlapping brain defects, including megalencephaly, dysgenesis of the corpus callosum, and enlarged ventricles, which implies a common but not redundant function in brain development. In line with these models, human phenotypes caused by haploinsufficiency of NFIA, NFIB, and NFIX display significant overlap, sharing neurodevelopmental deficits, macrocephaly, brain anomalies, and variable somatic overgrowth.

View Article and Find Full Text PDF

YAP1 fusion-positive supratentorial ependymomas predominantly occur in infants, but the molecular mechanisms of oncogenesis are unknown. Here we show YAP1-MAMLD1 fusions are sufficient to drive malignant transformation in mice, and the resulting tumors share histo-molecular characteristics of human ependymomas. Nuclear localization of YAP1-MAMLD1 protein is mediated by MAMLD1 and independent of YAP1-Ser127 phosphorylation.

View Article and Find Full Text PDF
Article Synopsis
  • * A study of 18 individuals with mild intellectual disabilities and behavioral issues revealed that they are haploinsufficient for NFIB, with various genetic alterations including microdeletions and point mutations affecting the NFIB gene.
  • * The analysis of a mouse model lacking NFIB in the cortex showed enlarged cerebral cortex while maintaining overall brain structure, suggesting that NFIB haploinsufficiency leads to intellectual disabilities accompanied by macrocephaly.
View Article and Find Full Text PDF

Background: Nuclear factor I family members nuclear factor I A and nuclear factor I B play important roles during cerebral cortical development. Nuclear factor I A and nuclear factor I B regulate similar biological processes, as their expression patterns, regulation of target genes and individual knockout phenotypes overlap. We hypothesised that the combined allelic loss of and would culminate in more severe defects in the cerebral cortex than loss of a single member.

View Article and Find Full Text PDF

During mouse spinal cord development, ventricular zone progenitor cells transition from producing neurons to producing glia at approximately embryonic day 11.5, a process known as the gliogenic switch. The transcription factors Nuclear Factor I (NFI) A and B initiate this developmental transition, but the contribution of a third NFI member, NFIX, remains unknown.

View Article and Find Full Text PDF

The nuclear factor I (NFI) transcription factors play important roles during normal development and have been associated with developmental abnormalities in humans. All four family members, NFIA, NFIB, NFIC and NFIX, have a homologous DNA binding domain and function by regulating cell proliferation and differentiation via the transcriptional control of their target genes. More recently, NFI genes have also been implicated in cancer based on genomic analyses and studies of animal models in a variety of tumours across multiple organ systems.

View Article and Find Full Text PDF

The nuclear factor I (NFI) family of transcription factors plays an important role in the development of the cerebral cortex in humans and mice. Disruption of nuclear factor IA (NFIA), nuclear factor IB (NFIB), or nuclear factor IX (NFIX) results in abnormal development of the corpus callosum, lateral ventricles, and hippocampus. However, the expression or function of these genes has not been examined in detail in the adult brain, and the cell type-specific expression of NFIA, NFIB, and NFIX is currently unknown.

View Article and Find Full Text PDF

Brain malformations involving the corpus callosum are common in children with developmental disabilities. We identified DCC mutations in four families and five sporadic individuals with isolated agenesis of the corpus callosum (ACC) without intellectual disability. DCC mutations result in variable dominant phenotypes with decreased penetrance, including mirror movements and ACC associated with a favorable developmental prognosis.

View Article and Find Full Text PDF

The corpus callosum is the major axon tract that connects and integrates neural activity between the two cerebral hemispheres. Although ∼1:4,000 children are born with developmental absence of the corpus callosum, the primary etiology of this condition remains unknown. Here, we demonstrate that midline crossing of callosal axons is dependent upon the prior remodeling and degradation of the intervening interhemispheric fissure.

View Article and Find Full Text PDF

Glioblastoma (GBM) is an essentially incurable and rapidly fatal cancer, with few markers predicting a favourable prognosis. Here we report that the transcription factor NFIB is associated with significantly improved survival in GBM. NFIB expression correlates inversely with astrocytoma grade and is lowest in mesenchymal GBM.

View Article and Find Full Text PDF

Transcription factors act during cortical development as master regulatory genes that specify cortical arealization and cellular identities. Although numerous transcription factors have been identified as being crucial for cortical development, little is known about their downstream targets and how they mediate the emergence of specific neuronal connections via selective axon guidance. The EMX transcription factors are essential for early patterning of the cerebral cortex, but whether EMX1 mediates interhemispheric connectivity by controlling corpus callosum formation remains unclear.

View Article and Find Full Text PDF

Mammalian neural stem/progenitor cells (NSPCs) sequentially generate neurons and glia during CNS development. Here we identified miRNA-153 (miR-153) as a modulator of the temporal regulation of NSPC differentiation. Overexpression (OE) of miR-153 delayed the onset of astrogliogenesis and maintained NSPCs in an undifferentiated state in vitro and in the developing cortex.

View Article and Find Full Text PDF

The Nuclear factor I (NFI) family of transcription factors regulates proliferation and differentiation throughout the developing central nervous system. In the developing telencephalon of humans and mice, reduced Nfi expression is associated with agenesis of the corpus callosum and other neurodevelopmental defects. Currently, little is known about how Nfi expression is regulated during early telencephalic development.

View Article and Find Full Text PDF

Epigenetic alterations, that is, disruption of DNA methylation and chromatin architecture, are now acknowledged as a universal feature of tumorigenesis. Medulloblastoma, a clinically challenging, malignant childhood brain tumour, is no exception. Despite much progress from recent genomics studies, with recurrent changes identified in each of the four distinct tumour subgroups (WNT-pathway-activated, SHH-pathway-activated, and the less-well-characterized Group 3 and Group 4), many cases still lack an obvious genetic driver.

View Article and Find Full Text PDF

Recent studies showed frequent mutations in histone H3 lysine 27 (H3K27) demethylases in medulloblastomas of Group 3 and Group 4, suggesting a role for H3K27 methylation in these tumors. Indeed, trimethylated H3K27 (H3K27me3) levels were shown to be higher in Group 3 and 4 tumors compared to WNT and SHH medulloblastomas, also in tumors without detectable mutations in demethylases. Here, we report that polycomb genes, required for H3K27 methylation, are consistently upregulated in Group 3 and 4 tumors.

View Article and Find Full Text PDF

Uterine leiomyomas are benign solid tumors of mesenchymal origin which occur with an estimated incidence of up to 77% of all women of reproductive age. The majority of these tumors remains symptomless, but in about a quarter of cases they cause leiomyoma-associated symptoms including chronic pelvic pain, menorrhagia-induced anemia, and impaired fertility. As a consequence, they are the most common indication for pre-menopausal hysterectomy in the USA and Japan and annually translate into a multibillion dollar healthcare problem.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessions34lvi034bposl59cpttsklhiou4o2hm): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once