Publications by authors named "Jens Bukh"

There is an ongoing need to expand the anti-SARS-CoV-2 armamentarium to include agents capable of suppressing replication of drug-resistant mutants emerging during monotherapy with approved direct-acting antivirals. Using a subgenomic SARS-CoV-2 replicon system, we studied the RNA replication capacity of nirmatrelvir (NTV)-resistant mutants and their susceptibility to next-generation Mpro inhibitors, including ibuzatrelvir (ITV), ensitrelvir (ETV), and ML2006a4. Our findings revealed that E166V Mpro mutants reduced viral RNA replication, whereas other Mpro mutations retained or increased the replication capacity, suggesting the potential of the latter to dominate under NTV selective pressure.

View Article and Find Full Text PDF
Article Synopsis
  • The evolution of SARS-CoV-2 has resulted in several variants of concern (VOCs), especially omicron sub-lineages, which display resistance to neutralizing antibodies from past infections or vaccinations.
  • In this study, researchers created various mutant viruses with spike protein changes from VOCs like omicron JN.1, and analyzed their resistance to neutralization using plasma from recovered and vaccinated individuals.
  • Findings revealed that while specific changes in the spike receptor binding domain contribute to resistance, alterations outside this region are also important; additionally, some omicron variants showed a reduced reliance on the ACE2 receptor for viral entry but maintained increased binding affinity for it.
View Article and Find Full Text PDF
Article Synopsis
  • Chronic HCV infection affects about 50 million people worldwide, leading to significant mortality, necessitating the development of a vaccine that can handle the virus's high variability and evasion of antibodies.
  • The study found that while HVR1 insertions in the virus's envelope protein are rare (0.7% in routine sequencing), 3% of patients demonstrated these insertions, impacting the virus's ability to evade neutralizing antibodies (NAbs).
  • HVR1 insertions were shown to be viable in living organisms, affecting antibody sensitivity and suggesting that they play a key role in how HCV escapes immune responses during infection.
View Article and Find Full Text PDF

The continuous emergence of SARS-CoV-2 variants of concern has rendered many therapeutic monoclonal antibodies (mAbs) ineffective. To date, there are no clinically authorized therapeutic antibodies effective against the recently circulating Omicron sub-lineages BA.2.

View Article and Find Full Text PDF

Fifty-eight million individuals worldwide are affected by chronic hepatitis C virus (HCV) infection, a primary driver of liver cancer for which no vaccine is available. The HCV envelope proteins E1 and E2 form a heterodimer (E1/E2), which is the target for neutralizing antibodies. However, the higher-order organization of these E1/E2 heterodimers, as well as that of any Hepacivirus envelope protein complex, remains unknown.

View Article and Find Full Text PDF

Unlabelled: Coinfections with human pegivirus 1 (HPgV-1) are common in chronic hepatitis C virus (HCV) patients. However, little is known about whether HPgV-1 is affected by direct-acting antivirals during HCV treatment. Metagenomic analysis and reverse transcriptase-quantitative PCR (RT-qPCR) were performed on RNA from the plasma of 88 selected chronic HCV patients undergoing medical treatment.

View Article and Find Full Text PDF

Rapidly waning immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires continued global access to affordable vaccines. Globally, inactivated SARS-CoV-2 vaccines have been widely used during the SARS-CoV-2 pandemic. In this proof-of-concept study we adapted an original-D614G SARS-CoV-2 virus to Vero cell culture as a strategy to enhance inactivated vaccine manufacturing productivity.

View Article and Find Full Text PDF

Background & Aims: An optimal HCV vaccine requires the induction of antibodies that neutralise the infectivity of many heterogenous viral isolates. In this study, we have focused on determining the optimal recombinant envelope glycoprotein component to elicit cross-neutralising antibodies against global HCV genotypes. We compared the immunoreactivity and antigenicity of the HCV genotype 1a strain H77C-derived envelope glycoprotein heterodimer gpE1/gpE2 with that of recombinant gpE2 alone.

View Article and Find Full Text PDF

Background And Aims: HCV infection continues to be a major global health burden despite effective antiviral treatments. The urgent need for a protective vaccine is hindered by the scarcity of suitable HCV-permissive animal models tractable in vaccination and challenge studies. Currently, only antibody neutralization studies in infectious cell culture systems or studies of protection by passive immunization of human liver chimeric mice offer the possibility to evaluate the effect of vaccine-induced antibodies.

View Article and Find Full Text PDF

Background & Aims: In individuals highly exposed to HCV, reinfection is common, suggesting that natural development of sterilising immunity is difficult. In those that are reinfected, some will develop a persistent infection, while a small proportion repeatedly clear the virus, suggesting natural protection is possible. The aim of this study was to characterise immune responses associated with rapid natural clearance of HCV reinfection.

View Article and Find Full Text PDF

As severe acute respiratory coronavirus 2 (SARS-CoV-2) variants continue to emerge, it is important to characterize immune responses against variants which can inform on protection efficacies following booster vaccination. In this study, neutralizing breadth and antigen-specific CD8 T cell responses were analyzed in both infection-naïve and infection-experienced individuals following administration of a booster bivalent Wuhan-Hu-1+BA.4/5 Comirnaty mRNA vaccine.

View Article and Find Full Text PDF

HCV genotype 3b is a difficult-to-treat subtype, associated with accelerated progression of liver disease and resistance to antivirals. Moreover, its prevalence has significantly increased among persons who inject drugs posing a serious risk of transmission in the general population. Thus, more genetic information and antiviral testing systems are required to develop novel therapeutic options for this genotype 3 subtype.

View Article and Find Full Text PDF

Despite the introduction of effective treatments for hepatitis C in clinics, issues remain regarding the liver disease induced by chronic hepatitis C virus (HCV) infection. HCV is known to disturb the metabolism of infected cells, especially lipid metabolism and redox balance, but the mechanisms leading to HCV-induced pathogenesis are still poorly understood. In an APEX2-based proximity biotinylation screen, we identified ACBD5, a peroxisome membrane protein, as located in the vicinity of HCV replication complexes.

View Article and Find Full Text PDF

Nirmatrelvir, which targets the SARS-CoV-2 main protease (Mpro), is the first-in-line drug for prevention and treatment of severe COVID-19, and additional Mpro inhibitors are in development. However, the risk of resistance development threatens the future efficacy of such direct-acting antivirals. To gain knowledge on viral correlates of resistance to Mpro inhibitors, we selected resistant SARS-CoV-2 under treatment with the nirmatrelvir-related protease inhibitor boceprevir.

View Article and Find Full Text PDF

Introduction: A substantial proportion of patients with bipolar disorder experience daily subsyndromal mood swings, and the term "mood instability" reflecting the variability in mood seems associated with poor prognostic factors, including impaired functioning, and increased risk of hospitalization and relapse. During the last decade, we have developed and tested a smartphone-based system for monitoring bipolar disorder. The present SmartBipolar randomized controlled trial (RCT) aims to investigate whether (1) daily smartphone-based outpatient monitoring and treatment including clinical feedback versus (2) daily smartphone-based monitoring without clinical feedback or (3) daily smartphone-based mood monitoring only improves mood instability and other clinically relevant patient-related outcomes in patients with bipolar disorder.

View Article and Find Full Text PDF

For any controlled human infection model (CHIM), a safe, standardized, and biologically relevant challenge inoculum is necessary. For hepatitis C virus (HCV) CHIM, we propose that human-derived high-titer inocula of several viral genotypes with extensive virologic, serologic, and molecular characterizations should be the most appropriate approach. These inocula should first be tested in human volunteers in a step-wise manner to ensure safety, reproducibility, and curability prior to using them for testing the efficacy of candidate vaccines.

View Article and Find Full Text PDF

This review provides a summary of the recently ratified changes to genus and species nomenclature within the virus family Flaviviridae along with reasons for these changes. First, it was considered that the vernacular terms "flaviviral", "flavivirus", and "flaviviruses" could under certain circumstances be ambiguous due to the same word stem "flavi" in the taxon names Flaviviridae and Flavivirus; these terms could either have referred to all viruses classified in the family Flaviviridae or only to viruses classified in the included genus Flavivirus. To remove this ambiguity, the genus name Flavivirus was changed to Orthoflavivirus by the International Committee on Taxonomy of Viruses (ICTV).

View Article and Find Full Text PDF

Background Aims: Human genetic variation is thought to guide the outcome of HCV infection, but model systems within which to dissect these host genetic mechanisms are limited. Norway rat hepacivirus, closely related to HCV, causes chronic liver infection in rats but causes acute self-limiting hepatitis in typical strains of laboratory mice, which resolves in 2 weeks. The Collaborative Cross (CC) is a robust mouse genetics resource comprised of a panel of recombinant inbred strains, which model the complexity of the human genome and provide a system within which to understand diseases driven by complex allelic variation.

View Article and Find Full Text PDF

RNA-binding proteins (RBPs) are key players regulating RNA processing and are associated with disorders ranging from cancer to neurodegeneration. Here, we present a proteomics workflow for large-scale identification of RBPs and their RNA-binding regions in the mammalian brain identifying 526 RBPs. Analysing brain tissue from males of the Huntington's disease (HD) R6/2 mouse model uncovered differential RNA-binding of the alternative splicing regulator RBM5.

View Article and Find Full Text PDF

RNA viruses have evolved elaborate strategies to protect their genomes, including 5' capping. However, until now no RNA 5' cap has been identified for hepatitis C virus (HCV), which causes chronic infection, liver cirrhosis and cancer. Here we demonstrate that the cellular metabolite flavin adenine dinucleotide (FAD) is used as a non-canonical initiating nucleotide by the viral RNA-dependent RNA polymerase, resulting in a 5'-FAD cap on the HCV RNA.

View Article and Find Full Text PDF

With no approved antiviral therapies, the continuous emergence and re-emergence of tick-borne encephalitis virus (TBEV) and yellow fever virus (YFV) is a rising concern. We performed head-to-head comparisons of the antiviral activity of available nucleos(t)ide analogs (nucs) using relevant human cell lines. Eight existing nucs inhibited TBEV and/or YFV with differential activity between cell lines and viruses.

View Article and Find Full Text PDF

The introduction of direct-acting antiviral (DAA) treatment of hepatitis C virus (HCV) infected patients has greatly increased treatment success rates. However, viral response kinetics to DAA treatment may depend on pre-existing resistance-associated substitutions (RASs) in HCV. The aim of this study was to describe how pre-existing RASs affect DAA treatment-induced reduction in HCV RNA titers in HCV genotypes 1- and 3-infected individuals.

View Article and Find Full Text PDF

Patients with chronic hepatitis B (CHB) gradually develop T cell exhaustion, and the inhibitory receptor molecule, cytotoxic T-lymphocyte antigen-4 (CTLA-4), may play a role in this phenomenon. This systematic review investigates the role of CTLA-4 in the development of T cell exhaustion in CHB. A systematic literature search was conducted on PubMed and Embase on 31 March 2023 to identify relevant studies.

View Article and Find Full Text PDF

Recent advances aid the development of vaccines to prevent chronic liver diseases.

View Article and Find Full Text PDF

Background And Aims: The high HCV infection cure rates achieved with direct-acting antiviral (DAA) treatments could be compromised in the future by the emergence of antiviral resistance. Thus, it is essential to understand the viral determinants that influence DAA resistance, which is most prevalent in genotype 3. We aimed at studying how resistance to protease-, NS5A-, and NS5B-inhibitors influences the activities of glecaprevir/pibrentasvir, sofosbuvir/velpatasvir, and sofosbuvir/velpatasvir/voxilaprevir in cell culture, and how the HCV genome adapts to selective pressure by successive rounds of treatment failure.

View Article and Find Full Text PDF