Antimicrob Agents Chemother
December 2020
New antibiotics are urgently needed to address the mounting resistance challenge. In early drug discovery, one of the bottlenecks is the elucidation of targets and mechanisms. To accelerate antibiotic research, we provide a proteomic approach for the rapid classification of compounds into those with precedented and unprecedented modes of action.
View Article and Find Full Text PDFDespite the availability of hundreds of antibiotic drugs, infectious diseases continue to remain one of the most notorious health issues. In addition, the disparity between the spread of multidrug-resistant pathogens and the development of novel classes of antibiotics exemplify an important unmet medical need that can only be addressed by identifying novel targets. Herein we demonstrate, by the development of the first in vivo active DegS inhibitors based on a pyrazolo[1,5-a]-1,3,5-triazine scaffold, that the serine protease DegS and the cell envelope stress-response pathway σE represent a target for generating antibiotics with a novel mode of action.
View Article and Find Full Text PDFCovalent modifications of nonactive site lysine residues by small molecule probes has recently evolved into an important strategy for interrogating biological systems. Here, we report the discovery of a class of bioreactive compounds that covalently modify lysine residues in DegS, the rate limiting protease of the essential bacterial outer membrane stress response pathway. These modifications lead to an allosteric activation and allow the identification of novel residues involved in the allosteric activation circuit.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2017
The S1 serine protease family is one of the largest and most biologically important protease families. Despite their biomedical significance, generic approaches to generate potent, class-specific, bioactive non-covalent inhibitors for these enzymes are still limited. In this work, we demonstrate that Ahp-cyclodepsipeptides represent a suitable scaffold for generating target-tailored inhibitors of serine proteases.
View Article and Find Full Text PDF