A collimated light beam parallel to the axis of a fused-quartz cylinder impinging on a 90° apex angle concave cone cut in a quartz rod is transformed into a cylindrical wave by total internal reflection. A thin metal film at the quartz-air interface enables excitation of the plasmon mode at the air side that can polarize the cylindrical wave and/or has the potential to monitor physical, chemical, or biological quantities or events at the inner wall of the cone. The present Letter first analyzes the plasmon coupling mechanism and conditions.
View Article and Find Full Text PDFIn recent years, the demand for highly integrated and lightweight components has been rising sharply, especially in plastics processing. One strategy for weight-saving solutions is the development of conductive tracks and layouts directly on the polymer housing parts in order to be able to dispense with the system integration of additional printed circuit boards (PCB). This can be conducted very advantageously and flexibly with laser-based processes for functionalizing polymer surfaces.
View Article and Find Full Text PDFSubsurface damage (SSD) induced during conventional manufacturing of optics contributes mainly to a reduction in the performance and quality of optics. In this paper, we propose the application of full-field optical coherence tomography (FF-OCT) as a high-resolution and nondestructive method for evaluation of SSD in optical substrates. Both ground and polished surfaces can be successfully imaged, providing a path to control SSD throughout the entire optics manufacturing process chain.
View Article and Find Full Text PDFThe growing number of commercially available machines for laser deposition welding show the growing acceptance and importance of this technology for industrial applications. Their increasing usage in research and production requires process stability and user-friendly handling. A commercially available DMG MORI LT 65 3D hybrid machine used in combination with a CCD-based coaxial temperature measurement system was utilized in this work to investigate what information relating to the intensity distribution of melt pool surfaces could be appropriate to draw conclusions about process conditions.
View Article and Find Full Text PDFFor the purpose of realizing a fast and cost-efficient manipulation of the laser beam in production applications, such as welding, marking, and cutting, scanner systems in combination with F-Theta objectives are state-of-the-art. Owing to the absorption of the laser beam power and the resulting heat load acting on the optical system, a change of the focal plane (the so-called focal shift) occurs, significantly affecting the behavior during the application process. A linear correlation between the temperature on the optical surface of a standard F-Theta objective and the focal shift was determined whereby the coefficient of determination R is higher than 0.
View Article and Find Full Text PDFThe purpose of this work was to design and manufacture a 3D range-modulator for scanned particle therapy. The modulator is intended to create a highly conformal dose distribution with only one fixed energy, simultaneously reducing considerably the treatment time. As a proof of concept, a 3D range-modulator was developed for a spherical target volume with a diameter of 5 cm, placed at a depth of 25 cm in a water phantom.
View Article and Find Full Text PDF