Morphogenesis of herpesvirus particles is highly conserved; however, the capsid assembly and genome packaging of human cytomegalovirus (HCMV) exhibit unique features. Examples of these include the essential role of the small capsid protein (SCP) and the existence of the β-herpesvirus-specific capsid-associated protein pp150. SCP and pp150, as well as the UL77 and UL93 proteins, are important capsid constituents, yet their precise mechanism of action is elusive.
View Article and Find Full Text PDFBacterial flagellar filaments are assembled by tens of thousands flagellin subunits, forming 11 helically arranged protofilaments. Each protofilament can take either of the two bistable forms L-type or R-type, having slightly different conformations and inter-protofilaments interactions. By mixing different ratios of L-type and R-type protofilaments, flagella adopt multiple filament polymorphs and promote bacterial motility.
View Article and Find Full Text PDFVirology has greatly benefited from the introduction of fluorescent proteins (FP's) as tags to viral as well as cellular structures. With advanced imaging technologies it is now possible to observe host-pathogen interactions in living cell systems in real-time. The generation of high-quality genetic tools to study host-pathogen interactions therefore becomes imperative for the further development of this type of analysis.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV) forms two gH/gL glycoprotein complexes, gH/gL/gO and gH/gL/pUL(128,130,131A), which determine the tropism, the entry pathways and the mode of spread of the virus. For murine cytomegalovirus (MCMV), which serves as a model for HCMV, a gH/gL/gO complex functionally homologous to the HCMV gH/gL/gO complex has been described. Knock-out of MCMV gO does impair, but not abolish, virus spread indicating that also MCMV might form an alternative gH/gL complex.
View Article and Find Full Text PDFThe gene M94 of murine cytomegalovirus (MCMV) as well as its homologues UL16 in alphaherpesviruses is involved in viral morphogenesis. For a better understanding of its role in the viral life cycle, a library of random M94 mutants was generated by modified transposon-based linker scanning mutagenesis. A comprehensive set of M94 mutants was reinserted into the MCMV genome and tested for their capacity to complement the M94 null mutant.
View Article and Find Full Text PDF