We present adult normalized data for MindPulse (MP), a new tool evaluating attentional and executive functioning (AEF) in decision-making. We recruited 722 neurotypical participants (18-80 years), with 149 retested. The MP test includes three tasks: Simple Reaction Time (SRT), Go/No-go, and complex Go/No-go, involving perceptual components, motor responses, and measurements of reaction time (RT) and correctness.
View Article and Find Full Text PDFAs Virtual reality (VR) is increasingly used in neurological disorders such as stroke, traumatic brain injury, or attention deficit disorder, the question of how it impacts the brain's neuronal activity and function becomes essential. VR can be combined with neuroimaging to offer invaluable insight into how the targeted brain areas respond to stimulation during neurorehabilitation training. That, in turn, could eventually serve as a predictive marker for therapeutic success.
View Article and Find Full Text PDF: We combined performance on working memory (WM) tasks with diffusion (dMRI) and functional (fMRI) magnetic resonance imaging in young adults who had suffered a concussion to better understand the inter-hemispheric effects of unilateral repetitive transcranial magnetic stimulation (rTMS). : The article is presenting pilot data on 8 symptomatic patients with persistent post-concussion symptoms for over 6 months. They received 20 sessions of rTMS over the left dorsolateral prefrontal cortex.
View Article and Find Full Text PDFGrowing evidence from the neuroscience of aging suggests that executive function plays a pivotal role in maintaining semantic processing performance. However, the presumed age-related activation changes that sustain executive semantic processing remain poorly understood. The aim of this study was to explore the executive aspects of semantic processing during a word-matching task with regard to age-related neuro-functional reorganization, as well as to identify factors that influence executive control profiles.
View Article and Find Full Text PDFMultiple studies have found neurofunctional changes in normal aging in a context of selective attention. Furthermore, many articles report intrahemispheric alteration in functional networks. However, little is known about age-related changes within the Ventral Attention Network (VAN), which underlies selective attention.
View Article and Find Full Text PDFMost of the studies conducted on the development of the corpus callosum (CC) have been limited to a relatively simple assessment of callosal area, providing an estimation of the size of the CC in two dimensions rather than its actual measurement. The goal of this study was to revisit callosal development in childhood and adolescence by using a three-dimensional (3D) magnetic resonance imaging template of the CC that considers the horizontal width of the CC and compares this with the two-dimensional (2D) callosal area. We mapped callosal growth in a large sample of youths followed longitudinally (N = 370 at T1; N = 304 at T2; and N = 246 at T3).
View Article and Find Full Text PDFObjective: Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects the corpus callosum (CC), which plays a key role in interhemispheric coupling in high-demand conditions. Using 3D callosal measurements and a letter-matching paradigm, this 2-part study investigated the neural substrate of interhemispheric coupling in individuals with AD or amnestic mild cognitive impairment (a-MCI) and age-matched healthy individuals (HC).
Method: Thirty-three right-handed participants were MRI scanned to measure the volume of the CC in 5 sections.
Neurofunctional reorganization with age is suspected to occur for many cognitive components including communication abilities. Several functional neuroimaging studies of elderly individuals have reported the occurrence of an interhemispheric neurofunctional reorganization characterized by more bilateral activation patterns. Other studies have indicated that the preservation of some other cognitive abilities is associated with some intrahemispheric reorganization following either a posterior-anterior or an anterior-posterior shift in aging.
View Article and Find Full Text PDFIt has been proposed that cognitive reserve is supported by two neural mechanisms: neural compensation and neural reserve. The purpose of this study was to test how these neural mechanisms are solicited in aging in the context of visual selective attention processing and whether they are inter- or intra-hemispheric. Younger and older participants were scanned using fMRI during a visual letter-matching task with two attentional load levels.
View Article and Find Full Text PDFThe cognitive reserve hypothesis proposes that the brain actively attempts to cope with age-related changes by using pre-existing cognitive networks (neural reserve) or enlisting compensatory processes (neural compensation). In a context of visual selective attention, the current study compared task-related activation with BOLD fMRI signals in younger (N=16) and older (N=16) adults using a letter-name-matching task with two attentional load levels. In the low-load condition, the target letter might share the same identity (e.
View Article and Find Full Text PDFSemantic deficits in Alzheimer's disease have been widely documented, but little is known about the integrity of semantic memory in the prodromal stage of the illness. The aims of the present study were to: (i) investigate naming abilities and semantic memory in amnestic mild cognitive impairment (aMCI), early Alzheimer's disease (AD) compared to healthy older subjects; (ii) investigate the association between naming and semantic knowledge in aMCI and AD; (iii) examine if the semantic impairment was present in different modalities; and (iv) study the relationship between semantic performance and grey matter volume using voxel-based morphometry. Results indicate that both naming and semantic knowledge of objects and famous people were impaired in aMCI and early AD groups, when compared to healthy age- and education-matched controls.
View Article and Find Full Text PDFThe ability of cerebral hemispheres to process language is influenced by multiple factors. The well-known right visual field advantage in word recognition in divided visual field tasks is affected by both intra- and inter-individual variables. For example, hemispheric linguistic abilities may vary within a given individual according to the language component being processed, whereas variations between individuals may be modulated by the individual's handedness and gender.
View Article and Find Full Text PDF