Glyburide, a sulfonylurea drug used to treat type 2 diabetes, boasts neuroprotective effects by targeting the sulfonylurea receptor 1 (SUR1) and associated ion channels in various cell types, including those in the central nervous system and the retina. Previously, we demonstrated that glyburide therapy improved retinal function and structure in a rat model of diabetic retinopathy. In the present study, we explore the application of glyburide in non-neovascular ("dry") age-related macular degeneration (AMD), another progressive disease characterized by oxidative stress-induced damage and neuroinflammation that trigger cell death in the retina.
View Article and Find Full Text PDFLight is known to induce retinal damage affecting photoreceptors and retinal pigment epithelium. For polychromatic light, the blue part of the spectrum is thought to be the only responsible for photochemical damage, leading to the establishment of a phototoxicity threshold for blue light (445 nm). For humans it corresponds to a retinal dose of 22 J/cm.
View Article and Find Full Text PDFIron is essential for retinal metabolism, but an excess of ferrous iron causes oxidative stress. In glaucomatous eyes, retinal ganglion cell (RGC) death has been associated with dysregulation of iron homeostasis. Transferrin (TF) is an endogenous iron transporter that controls ocular iron levels.
View Article and Find Full Text PDFRhegmatogenous retinal detachment (RD) is a threatening visual condition and a human disease model for retinal degenerations. Despite successful reattachment surgery, vision does not fully recover, due to subretinal fluid accumulation and subsequent photoreceptor cell death, through mechanisms that recapitulate those of retinal degenerative diseases. Hydrophilic bile acids are neuroprotective in animal models, but whether they can be used orally for retinal diseases is unknown.
View Article and Find Full Text PDFDysregulation of iron metabolism is observed in animal models of retinitis pigmentosa (RP) and in patients with age-related macular degeneration (AMD), possibly contributing to oxidative damage of the retina. Transferrin (TF), an endogenous iron chelator, was proposed as a therapeutic candidate. Here, the efficacy of TF non-viral gene therapy based on the electrotransfection of pEYS611, a plasmid encoding human TF, into the ciliary muscle was evaluated in several rat models of retinal degeneration.
View Article and Find Full Text PDFIron is essential for cell survival and function. It is a transition metal, that could change its oxidation state from Fe to Fe involving an electron transfer, the key of vital functions but also organ dysfunctions. The goal of this review is to illustrate the primordial role of iron and local iron homeostasis in retinal physiology and vision, as well as the pathological consequences of iron excess in animal models of retinal degeneration and in human retinal diseases.
View Article and Find Full Text PDF