Publications by authors named "Jenny Tigerholm"

Objective: Patients with small fiber neuropathy (SFN) suffer from neuropathic pain, which is still a therapeutic problem. Changed activation patterns of mechano-insensitive peripheral nerve fibers (CMi) could cause neuropathic pain. However, there is sparse knowledge about mechanisms leading to CMi dysfunction since it is difficult to dissect specific molecular mechanisms in humans.

View Article and Find Full Text PDF

Small area electrodes enable preferential activation of nociceptive fibers. It is debated, however, whether co-activation of large fibers still occurs for the existing electrode designs. Moreover, existing electrodes are limited to low stimulation intensities, for which behavioral and physiological responses may be considered less reliable.

View Article and Find Full Text PDF

Electrical preferential activation of small nociceptive fibers may be achieved with the use of specialized small area electrodes, however, the existing electrodes are limited to low stimulation intensities. As existing electrodes have been developed empirically, the present study aimed to use computational modeling and optimization techniques to investigate if changes in electrode design parameters could improve the preferential activation of small fibers.Two finite element models; one of a planar concentric and one of an intra-epidermal electrode were combined with two multi-compartmental nerve fiber models of an Aδ-fiber and an Aβ-fiber.

View Article and Find Full Text PDF

The excitability of large nerve fibers is reduced when their membrane potential is slowly depolarizing, i.e., the fibers display accommodation.

View Article and Find Full Text PDF
Article Synopsis
  • A study was conducted to compare the performance of various small area electrodes used for stimulating tiny skin nerve fibers, as previous evaluations lacked systematic comparisons.
  • Researchers developed a computational model that simulated skin response to five types of electrodes and validated it through experimental techniques.
  • Results showed that the intra-epidermal electrode was best for targeting small fibers but was sensitive to its placement, suggesting challenges for practical application.*
View Article and Find Full Text PDF

Introduction: Cold allodynia is often seen in the acute phase of oxaliplatin treatment, but the underlying pathophysiology remains unclear.

Methods: Patients scheduled for adjuvant oxaliplatin for colorectal cancer were examined with quantitative sensory testing and nerve excitability tests at baseline and after the second or third oxaliplatin cycle at different skin temperatures.

Results: Seven patients were eligible for examination.

View Article and Find Full Text PDF

Background: There is a need for new approaches to increase the knowledge of the membrane excitability of small nerve fibers both in healthy subjects, as well as during pathological conditions. Our research group has previously developed the perception threshold tracking technique to indirectly assess the membrane properties of peripheral small nerve fibers. In the current study, a new approach for studying membrane excitability by cooling small fibers, simultaneously with applying a slowly increasing electrical stimulation current, is evaluated.

View Article and Find Full Text PDF

Small-surface-area electrodes have successfully been used to preferentially activate cutaneous nociceptors, unlike conventional large area-electrodes, which preferentially activate large non-nociceptor fibers. Assessments of the strength-duration relationship, threshold electrotonus, and slowly increasing pulse forms have displayed different perception thresholds between large and small surface electrodes, which may indicate different excitability properties of the activated cutaneous nerves. In this study, the origin of the differences in perception thresholds between the two electrodes was investigated.

View Article and Find Full Text PDF

Following each action potential, C-fiber nociceptors undergo cyclical changes in excitability, including a period of superexcitability, before recovering their basal excitability state. The increase in superexcitability during this recovery cycle depends upon their immediate firing history of the axon, but also determines the instantaneous firing frequency that encodes pain intensity. To explore the mechanistic underpinnings of the recovery cycle phenomenon a biophysical model of a C-fiber has been developed.

View Article and Find Full Text PDF

Action potential initiation and conduction along peripheral axons is a dynamic process that displays pronounced activity dependence. In patients with neuropathic pain, differences in the modulation of axonal conduction velocity by activity suggest that this property may provide insight into some of the pathomechanisms. To date, direct recordings of axonal membrane potential have been hampered by the small diameter of the fibers.

View Article and Find Full Text PDF

A ketogenic diet is an alternative treatment of epilepsy in infants. The diet, rich in fat and low in carbohydrates, elevates the level of polyunsaturated fatty acids (PUFAs) in plasma. These substances have therefore been suggested to contribute to the anticonvulsive effect of the diet.

View Article and Find Full Text PDF

Highly synchronized neural firing has been discussed in relation to learning and memory, for instance sharp-wave activity in hippocampus. We were interested to study how a postsynaptic CA1 pyramidal neuron would integrate input of different levels of synchronicity. In previous work using computational modeling we studied how the integration depends on dendritic conductances.

View Article and Find Full Text PDF

In diseases of the brain, the distribution and properties of ion channels display deviations from healthy control subjects. We studied three cases of ion channel alteration related to epileptogenesis. The first case of ion channel alteration represents an enhanced sodium current, the second case addresses the downregulation of the transient potassium current K(A), and the third case relates to kinetic properties of K(A) in a patient with temporal lobe epilepsy.

View Article and Find Full Text PDF

A range of ionic currents have been suggested to be involved in distinct aspects of epileptogenesis. Based on pharmacological and genetic studies, potassium currents have been implicated, in particular the transient A-type potassium current (K(A)). Epileptogenic activity comprises a rich repertoire of characteristics, one of which is synchronized activity of principal cells as revealed by occurrences of for instance fast ripples.

View Article and Find Full Text PDF