1. Several combinations of cysteine to serine mutations at positions 57, 93, 99 and 129 in the extracellular N-terminal domain of human metabotropic 5a (hmGlu5a) receptors were produced and expressed in HEK293 cells. Quisqualic acid-induced intracellular calcium ([Ca(2+)](i)) mobilization and inositol phosphates (IP) accumulation revealed an apparent increased efficacy and decreased potency for hmGlu5a mutants C57S, C99S and C57/99S, as well as a total loss of function for the mutant C57/93/99/129S.
View Article and Find Full Text PDFMetabotropic glutamate (mGlu) 5 is a G-protein-coupled metabotropic glutamate receptor that plays an important role as a modulator of synaptic plasticity, ion channel activity, and excitotoxicity. 2-Methyl-6-(phenylethynyl)-pyridine (MPEP) is a highly potent, noncompetitive, selective, and systemically active antagonist of mGlu5 receptors. It binds to a novel allosteric site that resides within the seven-transmembrane domain of mGlu5 receptors.
View Article and Find Full Text PDF