Recently, tissue slices have been adapted to study both mouse and human T cell development. Thymic slices combine and complement the strengths of existing organotypic culture systems to study thymocyte differentiation. Specifically, the thymic slice system allows for high throughput experiments and the ability to introduce homogenous developmental intermediate populations into an environment with a well-established cortex and medulla.
View Article and Find Full Text PDFNegative selection is one of the primary mechanisms that render T cells tolerant to self. Thymic dendritic cells play an important role in negative selection, in line with their ability to induce migratory arrest and sustained TCR signals. Thymocytes themselves display self-peptide/MHC class I complexes, and although there is evidence that they can support clonal deletion, it is not clear whether they do so directly via stable cell-cell contacts and sustained TCR signals.
View Article and Find Full Text PDFPositive selection of CD8 T cells in the thymus is thought to be a multistep process lasting 3-4 d; however, the discrete steps involved are poorly understood. Here, we examine phenotypic changes, calcium signaling, and intrathymic migration in a synchronized cohort of MHC class I-specific thymocytes undergoing positive selection in situ. Transient elevations in intracellular calcium concentration ([Ca(2+)]i) and migratory pauses occurred throughout the first 24 h of positive selection, becoming progressively briefer and accompanied by a gradual shift in basal [Ca(2+)]i over time.
View Article and Find Full Text PDFThe catalytic activity of Zap70 is crucial for T cell antigen receptor (TCR) signaling, but the quantitative and temporal requirements for its function in thymocyte development are not known. Using a chemical-genetic system to selectively and reversibly inhibit Zap70 catalytic activity in a model of synchronized thymic selection, we showed that CD4(+)CD8(+) thymocytes integrate multiple, transient, Zap70-dependent signals over more than 36 h to reach a cumulative threshold for positive selection, whereas 1 h of signaling was sufficient for negative selection. Titration of Zap70 activity resulted in graded reductions in positive and negative selection but did not decrease the cumulative TCR signals integrated by positively selected OT-I cells, which revealed heterogeneity, even among CD4(+)CD8(+) thymocytes expressing identical TCRs undergoing positive selection.
View Article and Find Full Text PDFThe recognition by the T cell receptor (TCR) of self-peptides presented by the major histocompatibility complex (MHC) on antigen-presenting cells, such as dendritic cells and thymic epithelial cells, controls T cell fate in the thymus, with weak TCR signals inducing survival (positive selection) and stronger signals inducing death (negative selection). In vitro studies indicate that peptide ligands that induce positive selection stimulate a low, but sustained, pattern of TCR signaling; however, the temporal pattern of TCR signaling in MHC class I-restricted thymocytes (thymocytes that are presented with peptides by MHC class I) in the thymus, under conditions that support positive selection, is unknown. We addressed this question by examining intracellular Ca(2+) dynamics and migratory changes in thymocytes undergoing positive and negative selection in thymic slices.
View Article and Find Full Text PDFThe ordered migration of thymocytes from the cortex to the medulla is critical for the appropriate selection of the mature T cell repertoire. Most studies of thymocyte migration rely on mouse models, but we know relatively little about how human thymocytes find their appropriate anatomical niches within the thymus. Moreover, the signals that retain CD4+CD8+ double-positive (DP) thymocytes in the cortex and prevent them from entering the medulla prior to positive selection have not been identified in mice or humans.
View Article and Find Full Text PDFTwo-photon microscopy is a powerful method for visualizing biological processes as they occur in their native environment in real time. The immune system uniquely benefits from this technology as most of its constituent cells are highly motile and interact extensively with each other and with the environment. Two-photon microscopy has provided many novel insights into the dynamics of the development and function of the immune system that could not have been deduced by other methods and has become an indispensible tool in the arsenal of immunologists.
View Article and Find Full Text PDF