Publications by authors named "Jenny Ngo"

The epigenetic regulator Dot1, the only known histone H3K79 methyltransferase, has a conserved role in organismal development and homoeostasis. In yeast, is required for telomeric silencing and genomic integrity. In Drosophila, Dot1 () regulates homoeotic gene expression.

View Article and Find Full Text PDF

The elimination of oxidatively modified proteins is a crucial process in maintaining cellular homeostasis, especially during stress. Mitochondria are protein-dense, high traffic compartments, whose polypeptides are constantly exposed to superoxide, hydrogen peroxide, and other reactive species, generated by 'electron leakage' from the respiratory chain. The level of oxidative stress to mitochondrial proteins is not constant, but instead varies greatly with numerous metabolic and environmental factors.

View Article and Find Full Text PDF

A decline in mitochondrial biogenesis and mitochondrial protein quality control in skeletal muscle is a common finding in aging, but exercise training has been suggested as a possible cure. In this report, we tested the hypothesis that moderate-intensity exercise training could prevent the age-associated deterioration in mitochondrial biogenesis in the gastrocnemius muscle of Wistar rats. Exercise training, consisting of treadmill running at 60% of the initial Vo(2max), reversed or attenuated significant age-associated (detrimental) declines in mitochondrial mass (succinate dehydrogenase, citrate synthase, cytochrome-c oxidase-4, mtDNA), SIRT1 activity, AMPK, pAMPK, and peroxisome proliferator-activated receptor gamma coactivator 1-α, UCP3, and the Lon protease.

View Article and Find Full Text PDF

Oxidative damage to mitochondrial proteins is thought to contribute to the aging process, but the Lon protease normally degrades such proteins. In early-passage WI-38 human lung fibroblasts, Lon expression is rapidly induced during H(2)O(2) stress, which prevents the accumulation of oxidized proteins and protects cell viability. In contrast, middle passage cells exhibit only sluggish induction of Lon expression in oxidative stress, and oxidized proteins initially accumulate.

View Article and Find Full Text PDF

We report an entirely new role for the HSP70 chaperone in dissociating 26S proteasome complexes (into free 20S proteasomes and bound 19S regulators), preserving 19S regulators, and reconstituting 26S proteasomes in the first 1-3h after mild oxidative stress. These responses, coupled with direct 20S proteasome activation by poly(ADP ribose) polymerase in the nucleus and by PA28αβ in the cytoplasm, instantly provide cells with increased capacity to degrade oxidatively damaged proteins and to survive the initial effects of stress exposure. Subsequent adaptive (hormetic) processes (3-24h after stress exposure), mediated by several signal transduction pathways and involving increased transcription/translation of 20S proteasomes, immunoproteasomes, and PA28αβ, abrogate the need for 26S proteasome dissociation.

View Article and Find Full Text PDF

The targeted removal of damaged proteins by proteolysis is crucial for cell survival. We have shown previously that the Lon protease selectively degrades oxidized mitochondrial proteins, thus preventing their aggregation and cross-linking. We now show that the Lon protease is a stress-responsive protein that is induced by multiple stressors, including heat shock, serum starvation, and oxidative stress.

View Article and Find Full Text PDF

Mitochondria are a major intracellular source of free radicals and related oxidants. It is generally agreed that the mitochondrial production of such reactive oxygen and nitrogen species increases with age. Antioxidant systems in the mitochondria play an important role in limiting the amount of oxidative damage to tolerable levels.

View Article and Find Full Text PDF

Lon now emerges as a major regulator of multiple mitochondrial functions in human beings. Lon catalyzes the degradation of oxidatively modified matrix proteins, chaperones the assembly of inner membrane complexes, and participates in the regulation of mitochondrial gene expression and genome integrity. An early result of Lon downregulation in WI-38 VA-13 human lung fibroblasts is massive caspase 3 activation and extensive (although not universal) apoptotic death.

View Article and Find Full Text PDF