Multiple myeloma is a plasma cell malignancy, which develops in the bone marrow and frequently leads to severe bone destruction. Current antiresorptive therapies to treat the bone disease do little to repair damaged bone; therefore, new treatment strategies incorporating bone anabolic therapies are urgently required. We hypothesized that combination therapy using the standard of care antiresorptive zoledronic acid (Zol) with a bone anabolic (anti-TGFβ/1D11) would be more effective at treating myeloma-induced bone disease than Zol therapy alone.
View Article and Find Full Text PDFThe receptor tyrosine kinase c-Met, its ligand HGF, and components of the downstream signalling pathway, have all been implicated in the pathogenesis of myeloma, both as modulators of plasma cell proliferation and as agents driving osteoclast differentiation and osteoblast inhibition thus, all these contribute substantially to the bone destruction typically caused by myeloma. Patients with elevated levels of HGF have a poor prognosis, therefore, targeting these entities in such patients may be of substantial benefit. We hypothesized that ARQ-197 (Tivantinib), a small molecule c-Met inhibitor, would reduce myeloma cell growth and prevent myeloma-associated bone disease in a murine model.
View Article and Find Full Text PDFMelphalan is a cytotoxic chemotherapy used to treat patients with multiple myeloma (MM). Bone resorption by osteoclasts, by remodeling the bone surface, can reactivate dormant MM cells held in the endosteal niche to promote tumor development. Dormant MM cells can be reactivated after melphalan treatment; however, it is unclear whether melphalan treatment increases osteoclast formation to modify the endosteal niche.
View Article and Find Full Text PDFMicrometastasis is a barrier to the development of effective cancer therapies for prostate cancer metastasis to bone. The mechanisms remain incompletely characterised, primarily due to an inability to adequately monitor the initial metastatic events in vivo. This study aimed to establish a new model, allowing the tracking of prostate cancer cells homing to bone, and furthermore, to evaluate the response of this approach to therapeutic modulation, using the integrin antagonist GLPG0187.
View Article and Find Full Text PDF