In rodent models of type 2 diabetes (T2D), central administration of FGF1 normalizes elevated blood glucose levels in a manner that is sustained for weeks or months. Increased activity of NPY/AgRP neurons in the hypothalamic arcuate nucleus (ARC) is implicated in the pathogenesis of hyperglycemia in these animals, and the ARC is a key brain area for the antidiabetic action of FGF1. We therefore sought to determine whether FGF1 inhibits NPY/AgRP neurons and, if so, whether this inhibitory effect is sufficiently durable to offer a feasible explanation for sustained diabetes remission induced by central administration of FGF1.
View Article and Find Full Text PDFIntracerebroventricular (icv) injection of fibroblast growth factor 1 (FGF1) elicits remission of diabetic hyperglycemia in rodent models of type 2 diabetes. Here, we present an optimized protocol to study the intracellular signaling pathways underlying the FGF1-induced sustained glucose lowering in the mouse brain. This protocol combines icv injection of FGF1 and osmotic mini-pump infusion of U0126, an inhibitor of MAPK/ERK signaling.
View Article and Find Full Text PDFThe capacity of the brain to elicit sustained remission of hyperglycemia in rodent models of type 2 diabetes following intracerebroventricular (icv) injection of fibroblast growth factor 1 (FGF1) is well established. Here, we show that following icv FGF1 injection, hypothalamic signaling by extracellular signal-regulated kinases 1 and 2 (ERK1/2), members of the mitogen-activated protein kinase (MAPK) family, is induced for at least 24 h. Further, we show that this prolonged response is required for the sustained antidiabetic action of FGF1 since it is abolished by sustained (but not acute) pharmacologic blockade of hypothalamic MAPK/ERK signaling.
View Article and Find Full Text PDFWe recently showed that perineuronal nets (PNNs) enmesh glucoregulatory neurons in the arcuate nucleus (Arc) of the mediobasal hypothalamus (MBH), but whether these PNNs play a role in either the pathogenesis of type 2 diabetes (T2D) or its treatment remains unclear. Here we show that PNN abundance within the Arc is markedly reduced in the Zucker diabetic fatty (ZDF) rat model of T2D, compared with normoglycaemic rats, correlating with altered PNN-associated sulfation patterns of chondroitin sulfate glycosaminoglycans in the MBH. Each of these PNN-associated changes is reversed following a single intracerebroventricular (icv) injection of fibroblast growth factor 1 (FGF1) at a dose that induces sustained diabetes remission in male ZDF rats.
View Article and Find Full Text PDFIn rodent models of type 2 diabetes (T2D), sustained remission of hyperglycemia can be induced by a single intracerebroventricular (icv) injection of fibroblast growth factor 1 (FGF1), and the mediobasal hypothalamus (MBH) was recently implicated as the brain area responsible for this effect. To better understand the cellular response to FGF1 in the MBH, we sequenced >79,000 single-cell transcriptomes from the hypothalamus of diabetic Lep mice obtained on Days 1 and 5 after icv injection of either FGF1 or vehicle. A wide range of transcriptional responses to FGF1 was observed across diverse hypothalamic cell types, with glial cell types responding much more robustly than neurons at both time points.
View Article and Find Full Text PDFIn leptin-deficient mice, obesity and diabetes are associated with abnormal development of neurocircuits in the hypothalamic arcuate nucleus (ARC), a critical brain area for energy and glucose homeostasis. As this developmental defect can be remedied by systemic leptin administration, but only if given before postnatal day 28, a critical period (CP) for leptin-dependent development of ARC neurocircuits has been proposed. In other brain areas, CP closure coincides with the appearance of perineuronal nets (PNNs), extracellular matrix specializations that restrict the plasticity of neurons that they enmesh.
View Article and Find Full Text PDFIn rodent models of type 2 diabetes (T2D), sustained remission of diabetic hyperglycemia can be induced by a single intracerebroventricular (icv) injection of fibroblast growth factor 1 (FGF1). To identify the brain areas responsible for this effect, we first used immunohistochemistry to map the hypothalamic distribution of phosphorylated extracellular signal-related kinase 1/2 (pERK1/2), a marker of mitogen-activated protein kinase-ERK signal transduction downstream of FGF receptor activation. Twenty minutes after icv FGF1 injection in adult male Wistar rats, pERK1/2 staining was detected primarily in two hypothalamic areas: the arcuate nucleus-median eminence (ARC-ME) and the paraventricular nucleus (PVN).
View Article and Find Full Text PDFWe recently reported that in rodent models of type 2 diabetes (T2D), a single intracerebroventricular (icv) injection of fibroblast growth factor 1 (FGF1) induces remission of hyperglycemia that is sustained for weeks. To clarify the peripheral mechanisms underlying this effect, we used the Zucker diabetic fatty / rat model of T2D, which, like human T2D, is characterized by progressive deterioration of pancreatic β-cell function after hyperglycemia onset. We report that although icv FGF1 injection delays the onset of β-cell dysfunction in these animals, it has no effect on either glucose-induced insulin secretion or insulin sensitivity.
View Article and Find Full Text PDFStorm surge is often the greatest threat to life and critical infrastructures during hurricanes and violent storms. Millions of people living in low-lying coastal zones and critical infrastructure within this zone rely on accurate storm surge forecast for disaster prevention and flood hazard mitigation. However, variability in residual sea level up-estuary, defined here as observed sea level minus predicted tide, can enhance total water levels; variability in the surge thus needs to be captured accurately to reduce uncertainty in site specific hazard assessment.
View Article and Find Full Text PDF