Retinoblastoma (RB) proteins are highly conserved transcriptional regulators that play important roles during development by regulating cell-cycle gene expression. RBL2 dysfunction has been linked to a severe neurodevelopmental disorder. However, to date, clinical features have only been described in six individuals carrying five biallelic predicted loss of function (pLOF) variants.
View Article and Find Full Text PDFCongenital heart disease (CHD) describes a structural cardiac defect present from birth. A cohort of participants recruited to the 100,000 Genomes Project (100 kGP) with syndromic CHD (286 probands) and familial CHD (262 probands) were identified. "Tiering" following genome sequencing data analysis prioritised variants in gene panels linked to participant phenotype.
View Article and Find Full Text PDFPurpose: Identifying pathogenic noncoding variants is challenging. A single protein-altering variant is often identified in a recessive gene in individuals with developmental disorders (DD), but the prevalence of pathogenic noncoding "second hits" in trans with these is unknown.
Methods: In 4073 genetically undiagnosed rare-disease trio probands from the 100,000 Genomes project, we identified rare heterozygous protein-altering variants in recessive DD-associated genes.
Around 60% of individuals with neurodevelopmental disorders (NDD) remain undiagnosed after comprehensive genetic testing, primarily of protein-coding genes. Increasingly, large genome-sequenced cohorts are improving our ability to discover new diagnoses in the non-coding genome. Here, we identify the non-coding RNA as a novel syndromic NDD gene.
View Article and Find Full Text PDFVariants which disrupt splicing are a frequent cause of rare disease that have been under-ascertained clinically. Accurate and efficient methods to predict a variant's impact on splicing are needed to interpret the growing number of variants of unknown significance (VUS) identified by exome and genome sequencing. Here, we present the results of the CAGI6 Splicing VUS challenge, which invited predictions of the splicing impact of 56 variants ascertained clinically and functionally validated to determine splicing impact.
View Article and Find Full Text PDFBackground And Aims: Subcutaneous adipose tissue (SAT) dysfunction contributes to NAFLD pathogenesis and may be influenced by the gut microbiota. Whether transcript profiles of SAT are associated with liver fibrosis and are influenced by synbiotic treatment (that changes the gut microbiome) is unknown. We investigated: (a) whether the presence of clinically significant, ≥F2 liver fibrosis associated with adipose tissue (AT) dysfunction, differential gene expression in SAT, and/or a marker of tissue fibrosis (Composite collagen gene expression (CCGE)); and (b) whether synbiotic treatment modified markers of AT dysfunction and the SAT transcriptome.
View Article and Find Full Text PDFBackground: Both promoters and untranslated regions (UTRs) have critical regulatory roles, yet variants in these regions are largely excluded from clinical genetic testing due to difficulty in interpreting pathogenicity. The extent to which these regions may harbour diagnoses for individuals with rare disease is currently unknown.
Methods: We present a framework for the identification and annotation of potentially deleterious proximal promoter and UTR variants in known dominant disease genes.
Background: The COVID-19 pandemic has created pressure on healthcare systems worldwide. Tools that can stratify individuals according to prognosis could allow for more efficient allocation of healthcare resources and thus improved patient outcomes. It is currently unclear if blood gene expression signatures derived from patients at the point of admission to hospital could provide useful prognostic information.
View Article and Find Full Text PDFRetinitis pigmentosa (RP) is the most common cause of hereditary blindness, and may occur in isolation as a non-syndromic condition or alongside other features in a syndromic presentation. Biallelic or monoallelic mutations in one of eight genes encoding pre-mRNA splicing factors are associated with non-syndromic RP. The molecular mechanism of disease remains incompletely understood, limiting opportunities for targeted treatment.
View Article and Find Full Text PDFBackground: Genomic variants which disrupt splicing are a major cause of rare genetic diseases. However, variants which lie outside of the canonical splice sites are difficult to interpret clinically. Improving the clinical interpretation of non-canonical splicing variants offers a major opportunity to uplift diagnostic yields from whole genome sequencing data.
View Article and Find Full Text PDFBackground: The majority of clinical genetic testing focuses almost exclusively on regions of the genome that directly encode proteins. The important role of variants in non-coding regions in penetrant disease is, however, increasingly being demonstrated, and the use of whole genome sequencing in clinical diagnostic settings is rising across a large range of genetic disorders. Despite this, there is no existing guidance on how current guidelines designed primarily for variants in protein-coding regions should be adapted for variants identified in other genomic contexts.
View Article and Find Full Text PDFBackground: The 100 000 Genomes Project (100K) recruited National Health Service patients with eligible rare diseases and cancer between 2016 and 2018. PanelApp virtual gene panels were applied to whole genome sequencing data according to Human Phenotyping Ontology (HPO) terms entered by recruiting clinicians to guide focused analysis.
Methods: We developed a reverse phenotyping strategy to identify 100K participants with pathogenic variants in nine prioritised disease genes (), representative of the full phenotypic spectrum of multisystemic primary ciliopathies.
The worldwide COVID-19 pandemic has claimed millions of lives and has had a profound effect on global life. Understanding the body's immune response to SARS-CoV-2 infection is crucial in improving patient management and prognosis. In this study we compared influenza and SARS-CoV-2 infected patient cohorts to identify distinct blood transcript abundances and cellular composition to better understand the natural immune response associated with COVID-19, compared to another viral infection being influenza, and identify a prognostic signature of COVID-19 patient outcome.
View Article and Find Full Text PDFBackground: It is estimated that up to 50% of all disease causing variants disrupt splicing. Due to its complexity, our ability to predict which variants disrupt splicing is limited, meaning missed diagnoses for patients. The emergence of machine learning for targeted medicine holds great potential to improve prediction of splice disrupting variants.
View Article and Find Full Text PDFObjective: To investigate the detection of pathogenic variants using exome sequencing in an international cohort of fetuses with central nervous system (CNS) anomalies.
Methods: We reviewed trio exome sequencing (ES) results for two previously reported unselected cohorts (Prenatal Assessment of Genomes and Exomes (PAGE) and CUIMC) to identify fetuses with CNS anomalies with unremarkable karyotypes and chromosomal microarrays. Variants were classified according to ACMG guidelines and association of pathogenic variants with specific types of CNS anomalies explored.
Background: Primary ciliopathies represent a group of inherited disorders due to defects in the primary cilium, the 'cell's antenna'. The 100,000 Genomes Project was launched in 2012 by Genomics England (GEL), recruiting National Health Service (NHS) patients with eligible rare diseases and cancer. Sequence data were linked to Human Phenotype Ontology (HPO) terms entered by recruiting clinicians.
View Article and Find Full Text PDFBMC Med Genomics
September 2021
Background: It is estimated that 1-13% of cases of bronchiectasis in adults globally are attributable to primary ciliary dyskinesia (PCD) but many adult patients with bronchiectasis have not been investigated for PCD. PCD is a disorder caused by mutations in genes required for motile cilium structure or function, resulting in impaired mucociliary clearance. Symptoms appear in infancy but diagnosis is often late or missed, often due to the lack of a "gold standard" diagnostic tool and non-specific symptoms.
View Article and Find Full Text PDFMutations which affect splicing are significant contributors to rare disease, but are frequently overlooked by diagnostic sequencing pipelines. Greater ascertainment of pathogenic splicing variants will increase diagnostic yields, ending the diagnostic odyssey for patients and families affected by rare disorders, and improving treatment and care strategies. Advances in sequencing technologies, predictive modeling, and understanding of the mechanisms of splicing in recent years pave the way for improved detection and interpretation of splice affecting variants, yet several limitations still prohibit their routine ascertainment in diagnostic testing.
View Article and Find Full Text PDFPurpose: Several clinical phenotypes including fetal hydrops, central conducting lymphatic anomaly or capillary malformations with arteriovenous malformations 2 (CM-AVM2) have been associated with EPHB4 (Ephrin type B receptor 4) variants, demanding new approaches for deciphering pathogenesis of novel variants of uncertain significance (VUS) identified in EPHB4, and for the identification of differentiated disease mechanisms at the molecular level.
Methods: Ten index cases with various phenotypes, either fetal hydrops, CM-AVM2, or peripheral lower limb lymphedema, whose distinct clinical phenotypes are described in detail in this study, presented with a variant in EPHB4. In vitro functional studies were performed to confirm pathogenicity.
Ciliopathies are a broad range of inherited developmental and degenerative diseases associated with structural or functional defects in motile or primary non-motile cilia. There are around 200 known ciliopathy disease genes and whilst genetic testing can provide an accurate diagnosis, 24-60% of ciliopathy patients who undergo genetic testing do not receive a genetic diagnosis. This is partly because following current guidelines from the American College of Medical Genetics and the Association for Molecular Pathology, it is difficult to provide a confident clinical diagnosis of disease caused by missense or non-coding variants, which account for more than one-third of cases of disease.
View Article and Find Full Text PDF