Publications by authors named "Jenny Lord"

Retinoblastoma (RB) proteins are highly conserved transcriptional regulators that play important roles during development by regulating cell-cycle gene expression. RBL2 dysfunction has been linked to a severe neurodevelopmental disorder. However, to date, clinical features have only been described in six individuals carrying five biallelic predicted loss of function (pLOF) variants.

View Article and Find Full Text PDF

Congenital heart disease (CHD) describes a structural cardiac defect present from birth. A cohort of participants recruited to the 100,000 Genomes Project (100 kGP) with syndromic CHD (286 probands) and familial CHD (262 probands) were identified. "Tiering" following genome sequencing data analysis prioritised variants in gene panels linked to participant phenotype.

View Article and Find Full Text PDF
Article Synopsis
  • RNA sequencing (RNA-seq) is being used to enhance diagnostics in cases where DNA testing doesn't provide clear answers, particularly for detecting abnormal gene expression and splicing patterns.
  • The study analyzed blood samples from 86 patients with suspected genetic disorders, focusing on identifying splicing abnormalities and gene expression outliers in VUSs and undiagnosed cases.
  • The results showed that RNA-seq helped diagnose four new cases by revealing novel splicing events and provided insights into the utility of RNA analysis for improving diagnostic outcomes in genetic disorders.
View Article and Find Full Text PDF

Purpose: Identifying pathogenic noncoding variants is challenging. A single protein-altering variant is often identified in a recessive gene in individuals with developmental disorders (DD), but the prevalence of pathogenic noncoding "second hits" in trans with these is unknown.

Methods: In 4073 genetically undiagnosed rare-disease trio probands from the 100,000 Genomes project, we identified rare heterozygous protein-altering variants in recessive DD-associated genes.

View Article and Find Full Text PDF
Article Synopsis
  • * The study identifies RNU4-2, a non-coding RNA gene, as a significant contributor to syndromic NDD, revealing a specific 18-base pair region with low variation that includes variants found in 115 individuals with NDD.
  • * RNU4-2 is highly expressed in the developing brain, and its variants disrupt splicing processes, indicating that non-coding genes play a crucial role in rare disorders, potentially aiding in the diagnosis of thousands with NDD worldwide.
View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the role of inversions—structural variants that involve the rearrangement of DNA—in genetic diseases, using data from 33,924 families involved in the 100,000 Genomes Project.
  • Researchers identified 47 ultra-rare rearrangements, including de novo inversions, in genes linked to disease, with analyses correlating genetic findings to clinical outcomes in some cases, including a specific diagnosis for three family members.
  • The findings suggest that while inversions are less common in genetic diseases compared to other structural variants, they can significantly contribute to the etiology in approximately 1 in 750 families with rare conditions.
View Article and Find Full Text PDF

Around 60% of individuals with neurodevelopmental disorders (NDD) remain undiagnosed after comprehensive genetic testing, primarily of protein-coding genes. Increasingly, large genome-sequenced cohorts are improving our ability to discover new diagnoses in the non-coding genome. Here, we identify the non-coding RNA as a novel syndromic NDD gene.

View Article and Find Full Text PDF

Variants which disrupt splicing are a frequent cause of rare disease that have been under-ascertained clinically. Accurate and efficient methods to predict a variant's impact on splicing are needed to interpret the growing number of variants of unknown significance (VUS) identified by exome and genome sequencing. Here, we present the results of the CAGI6 Splicing VUS challenge, which invited predictions of the splicing impact of 56 variants ascertained clinically and functionally validated to determine splicing impact.

View Article and Find Full Text PDF

Background And Aims: Subcutaneous adipose tissue (SAT) dysfunction contributes to NAFLD pathogenesis and may be influenced by the gut microbiota. Whether transcript profiles of SAT are associated with liver fibrosis and are influenced by synbiotic treatment (that changes the gut microbiome) is unknown. We investigated: (a) whether the presence of clinically significant, ≥F2 liver fibrosis associated with adipose tissue (AT) dysfunction, differential gene expression in SAT, and/or a marker of tissue fibrosis (Composite collagen gene expression (CCGE)); and (b) whether synbiotic treatment modified markers of AT dysfunction and the SAT transcriptome.

View Article and Find Full Text PDF

Background: Both promoters and untranslated regions (UTRs) have critical regulatory roles, yet variants in these regions are largely excluded from clinical genetic testing due to difficulty in interpreting pathogenicity. The extent to which these regions may harbour diagnoses for individuals with rare disease is currently unknown.

Methods: We present a framework for the identification and annotation of potentially deleterious proximal promoter and UTR variants in known dominant disease genes.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic has created pressure on healthcare systems worldwide. Tools that can stratify individuals according to prognosis could allow for more efficient allocation of healthcare resources and thus improved patient outcomes. It is currently unclear if blood gene expression signatures derived from patients at the point of admission to hospital could provide useful prognostic information.

View Article and Find Full Text PDF

Retinitis pigmentosa (RP) is the most common cause of hereditary blindness, and may occur in isolation as a non-syndromic condition or alongside other features in a syndromic presentation. Biallelic or monoallelic mutations in one of eight genes encoding pre-mRNA splicing factors are associated with non-syndromic RP. The molecular mechanism of disease remains incompletely understood, limiting opportunities for targeted treatment.

View Article and Find Full Text PDF

Background: Genomic variants which disrupt splicing are a major cause of rare genetic diseases. However, variants which lie outside of the canonical splice sites are difficult to interpret clinically. Improving the clinical interpretation of non-canonical splicing variants offers a major opportunity to uplift diagnostic yields from whole genome sequencing data.

View Article and Find Full Text PDF

Background: The majority of clinical genetic testing focuses almost exclusively on regions of the genome that directly encode proteins. The important role of variants in non-coding regions in penetrant disease is, however, increasingly being demonstrated, and the use of whole genome sequencing in clinical diagnostic settings is rising across a large range of genetic disorders. Despite this, there is no existing guidance on how current guidelines designed primarily for variants in protein-coding regions should be adapted for variants identified in other genomic contexts.

View Article and Find Full Text PDF

Background: The 100 000 Genomes Project (100K) recruited National Health Service patients with eligible rare diseases and cancer between 2016 and 2018. PanelApp virtual gene panels were applied to whole genome sequencing data according to Human Phenotyping Ontology (HPO) terms entered by recruiting clinicians to guide focused analysis.

Methods: We developed a reverse phenotyping strategy to identify 100K participants with pathogenic variants in nine prioritised disease genes (), representative of the full phenotypic spectrum of multisystemic primary ciliopathies.

View Article and Find Full Text PDF

The worldwide COVID-19 pandemic has claimed millions of lives and has had a profound effect on global life. Understanding the body's immune response to SARS-CoV-2 infection is crucial in improving patient management and prognosis. In this study we compared influenza and SARS-CoV-2 infected patient cohorts to identify distinct blood transcript abundances and cellular composition to better understand the natural immune response associated with COVID-19, compared to another viral infection being influenza, and identify a prognostic signature of COVID-19 patient outcome.

View Article and Find Full Text PDF

Background: It is estimated that up to 50% of all disease causing variants disrupt splicing. Due to its complexity, our ability to predict which variants disrupt splicing is limited, meaning missed diagnoses for patients. The emergence of machine learning for targeted medicine holds great potential to improve prediction of splice disrupting variants.

View Article and Find Full Text PDF

Objective: To investigate the detection of pathogenic variants using exome sequencing in an international cohort of fetuses with central nervous system (CNS) anomalies.

Methods: We reviewed trio exome sequencing (ES) results for two previously reported unselected cohorts (Prenatal Assessment of Genomes and Exomes (PAGE) and CUIMC) to identify fetuses with CNS anomalies with unremarkable karyotypes and chromosomal microarrays. Variants were classified according to ACMG guidelines and association of pathogenic variants with specific types of CNS anomalies explored.

View Article and Find Full Text PDF

Background: Primary ciliopathies represent a group of inherited disorders due to defects in the primary cilium, the 'cell's antenna'. The 100,000 Genomes Project was launched in 2012 by Genomics England (GEL), recruiting National Health Service (NHS) patients with eligible rare diseases and cancer. Sequence data were linked to Human Phenotype Ontology (HPO) terms entered by recruiting clinicians.

View Article and Find Full Text PDF
Article Synopsis
  • - The study evaluates eight algorithms and a consensus approach to assess the impact of pre-messenger RNA splicing variants on human disease diagnosis, focusing on 249 variants of uncertain significance (VUSs).
  • - It finds that SpliceAI is the most effective single algorithm, but combining multiple tools can improve accuracy in determining if VUSs are pathogenic or benign.
  • - The research indicates that 15% of individuals (2783 total) referred for rare disorders have splicing-impacting variants not previously classified as pathogenic, suggesting potential for new diagnoses in one out of every five cases.
View Article and Find Full Text PDF

Background: It is estimated that 1-13% of cases of bronchiectasis in adults globally are attributable to primary ciliary dyskinesia (PCD) but many adult patients with bronchiectasis have not been investigated for PCD. PCD is a disorder caused by mutations in genes required for motile cilium structure or function, resulting in impaired mucociliary clearance. Symptoms appear in infancy but diagnosis is often late or missed, often due to the lack of a "gold standard" diagnostic tool and non-specific symptoms.

View Article and Find Full Text PDF

Mutations which affect splicing are significant contributors to rare disease, but are frequently overlooked by diagnostic sequencing pipelines. Greater ascertainment of pathogenic splicing variants will increase diagnostic yields, ending the diagnostic odyssey for patients and families affected by rare disorders, and improving treatment and care strategies. Advances in sequencing technologies, predictive modeling, and understanding of the mechanisms of splicing in recent years pave the way for improved detection and interpretation of splice affecting variants, yet several limitations still prohibit their routine ascertainment in diagnostic testing.

View Article and Find Full Text PDF

Purpose: Several clinical phenotypes including fetal hydrops, central conducting lymphatic anomaly or capillary malformations with arteriovenous malformations 2 (CM-AVM2) have been associated with EPHB4 (Ephrin type B receptor 4) variants, demanding new approaches for deciphering pathogenesis of novel variants of uncertain significance (VUS) identified in EPHB4, and for the identification of differentiated disease mechanisms at the molecular level.

Methods: Ten index cases with various phenotypes, either fetal hydrops, CM-AVM2, or peripheral lower limb lymphedema, whose distinct clinical phenotypes are described in detail in this study, presented with a variant in EPHB4. In vitro functional studies were performed to confirm pathogenicity.

View Article and Find Full Text PDF

Ciliopathies are a broad range of inherited developmental and degenerative diseases associated with structural or functional defects in motile or primary non-motile cilia. There are around 200 known ciliopathy disease genes and whilst genetic testing can provide an accurate diagnosis, 24-60% of ciliopathy patients who undergo genetic testing do not receive a genetic diagnosis. This is partly because following current guidelines from the American College of Medical Genetics and the Association for Molecular Pathology, it is difficult to provide a confident clinical diagnosis of disease caused by missense or non-coding variants, which account for more than one-third of cases of disease.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0se46t5ogso6o69sian1231vj77o13eb): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once