Intercalated discs (ICD), specific cell-to-cell contacts that connect adjacent cardiomyocytes, ensure mechanical and electrochemical coupling during contraction of the heart. Mutations in genes encoding ICD components are linked to cardiovascular diseases. Here, we show that loss of Xinβ, a newly-identified component of ICDs, results in cardiomyocyte proliferation defects and cardiomyopathy.
View Article and Find Full Text PDFThe Xin repeat-containing proteins were originally found in the intercalated discs of cardiac muscle with implicated roles in cardiac development and function. A pair of paralogous genes, Xinα (Xirp1) and Xinβ (Xirp2), is present in mammals. Ablation of the mouse Xinα (mXinα) did not affect heart development but caused late-onset adulthood cardiac hypertrophy and cardiomyopathy with conductive defects.
View Article and Find Full Text PDFCardiomyocyte-like cells have been reported in thoracic veins of rodents and other mammals, but their differentiation state and relationship to the muscle mass in the heart remain to be characterized. Here we investigated the distribution, ultrastructure, expression and developmental regulation of myofilament proteins of mouse and rat pulmonary and azygos venous cardiomyocytes. Tracing cardiomyocytes in transgenic mouse tissues using a lacZ reporter gene driven by a cloned rat cardiac troponin T promoter demonstrated scattered distribution of cardiomyocytes discontinuous from the atrial sleeves.
View Article and Find Full Text PDFTargeted deletion of mXinalpha results in cardiac hypertrophy and cardiomyopathy with conduction defects (Gustafson-Wagner, E., Sinn, H. W.
View Article and Find Full Text PDFThe intercalated disk protein Xin was originally discovered in chicken striated muscle and implicated in cardiac morphogenesis. In the mouse, there are two homologous genes, mXinalpha and mXinbeta. The human homolog of mXinalpha, Cmya1, maps to chromosomal region 3p21.
View Article and Find Full Text PDFArch Biochem Biophys
December 2006
The contractile ring and the cell cortex generate force to divide the cell while maintaining symmetrical shape. This requires temporal and spatial regulation of the actin cytoskeleton at these areas. We force-expressed misregulated versions of actin-binding proteins, tropomyosin and caldesmon, into cells and analyzed their effects on cell division.
View Article and Find Full Text PDFCaldesmon is believed to be one of the key regulators for actin dynamics and thereby cell polarity, membrane extension, and cell motility. We have shown previously that stress fiber formation and cell movement are severely impaired in the cells expressing human fibroblast caldesmon fragment defective in Ca2+/CaM binding sites. Both Ser458 and Ser489, adjacent to the Ca2+/CaM-binding sites, are phosphorylated by p21-activated kinase (PAK) in vitro.
View Article and Find Full Text PDFDespite intensive in vitro studies, little is known about the regulation of caldesmon (CaD) by Ca(2+)-calmodulin (Ca(2+)-CaM) in vivo. To investigate this regulation, a mutant was generated of the C-terminal fragment of human fibroblast CaD, termed CaD39-AB, in which two crucial tryptophan residues involved in Ca(2+)-CaM binding were each replaced with alanine. The mutation abolished most CaD39-AB binding to Ca(2+)-CaM in vitro but had little effect on in vitro binding to actin filaments and the ability to inhibit actin/tropomyosin-activated heavy meromyosin ATPase.
View Article and Find Full Text PDFBackground & Aims: Nonmuscle human tropomyosin (hTM) isoforms have distinct functions and may play important roles in various disease processes.
Methods: In an attempt to identify colon epithelial tropomyosin isoform, a complementary DNA library prepared from a human colon cancer cell line T84 was screened by an oligonucleotide probe complementary to messages of all known hTM isoforms. A novel clone called TC22 was obtained.