Publications by authors named "Jenny Kung"

Indole-3-carbinol (I3C), a natural autolysis product of a gluccosinolate present in Brassica vegetables such as broccoli and cabbage, has anti-proliferative and anti-estrogenic activities in human breast cancer cells. A new and significantly more potent I3C analogue, 1-benzyl-I3C was synthesized, and in comparison to I3C, this novel derivative displayed an approximate 1000-fold enhanced potency in suppressing the growth of both estrogen responsive (MCF-7) and estrogen-independent (MDA-MB-231) human breast cancer cells (I3C IC(50) of 52 microM, and 1-benzyl-I3C IC(50) of 0.05 microM).

View Article and Find Full Text PDF

Indole-3-carbinol (I3C), a naturally occurring component of Brassica vegetables, such as cabbage, broccoli, and Brussels sprouts, induces a G1 cell cycle arrest of human breast cancer cells. Structure-activity relationships of I3C that mediate this anti-proliferative response were investigated using synthetic and natural I3C derivatives that contain substitutions at the indole nitrogen. Nitrogen substitutions included N-alkoxy substituents of one to four carbons in length, which inhibit dehydration and the formation of the reactive indolenine.

View Article and Find Full Text PDF

The fluorogenic reagent 4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (ABDF) attenuates the functional activity of the protein tyrosine phosphatase PTP1B by reacting selectively with a single cysteine residue, leaving other cysteines in the protein unmodified. This modification reduces Vmax without substantially affecting substrate binding (Km), indicative of an allosteric mode of inhibition. Consistent with this, the cysteine residue modified by ABDF, Cys 121, lies outside the catalytic site but makes interactions with residues that contact His 214, which has been shown to be important for catalysis.

View Article and Find Full Text PDF

Obesity and type II diabetes are closely linked metabolic syndromes that afflict >100 million people worldwide. Although protein tyrosine phosphatase 1B (PTP1B) has emerged as a promising target for the treatment of both syndromes, the discovery of pharmaceutically acceptable inhibitors that bind at the active site remains a substantial challenge. Here we describe the discovery of an allosteric site in PTP1B.

View Article and Find Full Text PDF

Protein tyrosine phosphatases play important roles in many signaling cascades involved in human disease. The identification of druglike inhibitors for these targets is a major challenge, and the discovery of suitable phosphotyrosine (pY) mimetics remains one of the key difficulties. Here we describe an extension of tethering technology, "breakaway tethering", which is ideally suited for discovering such new chemical entities.

View Article and Find Full Text PDF