Serum response factor (SRF) controls gene transcription in vascular smooth muscle cells (VSMCs) and regulates VSMC phenotypic switch from a contractile to a synthetic state, which plays a key role in the pathogenesis of cardiovascular diseases (CVD). It is not known how post-translational SUMOylation regulates the SRF activity in CVD. Here we show that Senp1 deficiency in VSMCs increased SUMOylated SRF and the SRF-ELK complex, leading to augmented vascular remodeling and neointimal formation in mice.
View Article and Find Full Text PDFSerum response factor (SRF) controls gene transcription in vascular smooth muscle cells (VSMCs) and regulates VSMC phenotypic switch from a contractile to a synthetic state, which plays a key role in the pathogenesis of cardiovascular diseases (CVD). SRF activity is regulated by its associated cofactors. However, it is not known how post-translational SUMOylation regulates the SRF activity in CVD.
View Article and Find Full Text PDFAlthough mitochondrial activity is critical for angiogenesis, its mechanism is not entirely clear. Here we show that mice with endothelial deficiency of any one of the three nuclear genes encoding for mitochondrial proteins, transcriptional factor (TFAM), respiratory complex IV component (COX10), or redox protein thioredoxin 2 (TRX2), exhibit retarded retinal vessel growth and arteriovenous malformations (AVM). Single-cell RNA-seq analyses indicate that retinal ECs from the three mutant mice have increased TGFβ signaling and altered gene expressions associated with vascular maturation and extracellular matrix, correlating with vascular malformation and increased basement membrane thickening in microvesels of mutant retinas.
View Article and Find Full Text PDFCold Spring Harb Perspect Med
March 2023
Cerebral cavernous malformations (CCMs), consisting of multiple, dilated capillary channels formed by a single layer of endothelium and lacking parenchymal cells, are exclusively to the brain. Patients with inherited autosomal-dominant CCMs carry loss-of-function mutations in one of three genes: CCM1, CCM2, and CCM3. It is not known why CCM lesions are confined to brain vasculature despite the ubiquitous expression of CCM proteins in all tissues, and whether cell types other than endothelial cells (ECs) contribute to CCM lesion formation.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
December 2021
Objective: Cerebral cavernous malformations (CCMs) can happen anywhere in the body, although they most commonly produce symptoms in the brain. The role of CCM genes in other vascular beds outside the brain and retina is not well-examined, although the 3 CCM-associated genes (, , and ) are ubiquitously expressed in all tissues. We aimed to determine the role of gene in lymphatics.
View Article and Find Full Text PDF