The target of rapamycin (TOR) kinase is an important regulator of growth in eukaryotic cells. In budding yeast, Tor1p and Tor2p function as part of two distinct protein complexes, TORC1 and TORC2, where TORC1 is specifically inhibited by the antibiotic rapamycin. Significant insight into TORC1 function has been obtained using rapamycin as a specific small molecule inhibitor of TOR activity.
View Article and Find Full Text PDFThe target of rapamycin (TOR) signaling pathway is an essential regulator of cell growth in eukaryotic cells. In Saccharomyces cerevisiae, TOR controls the expression of many genes involved in a wide array of distinct nutrient-responsive metabolic pathways. By exploring the TOR pathway under different growth conditions, we have identified novel TOR-regulated genes, including genes required for branched-chain amino acid biosynthesis as well as lysine biosynthesis (LYS genes).
View Article and Find Full Text PDFThe heterodimeric bZip/HLH transcription factors Rtg1p and Rtg3p regulate the expression of a concise set of metabolic genes (termed RTG target genes) required for de novo biosynthesis of glutamate and glutamine. Several components have now been identified that control both the intracellular localization as well as activity of the Rtg1p.Rtg3p complex, yet the precise upstream regulatory signals involved remain unclear.
View Article and Find Full Text PDF