Publications by authors named "Jenny C Munoz-Saenz"

Native potato clones grown in Peru contain bioactive compounds beneficial to human health. This study aimed to optimize the spray-drying nanoencapsulation of native potato phenolic extracts utilizing a central composite design and response surface methodology, obtaining the optimal treatment to an inlet temperature of 120 °C and an airflow of 141 L/h in the nano spray dryer B-90, which allowed maximizing the yield of encapsulation, antioxidant capacity (DPPH), encapsulation efficiency (EE), total phenolic compounds, and total flavonoids; on the other hand, it allowed minimizing hygroscopicity, water activity (Aw), and moisture. Instrumental characterization of the nanocapsules was also carried out, observing a gain in lightness, reddening of the color, and spherical nanoparticles of heterogeneous size (133.

View Article and Find Full Text PDF

Native potatoes ( spp. ) have diverse pigments and are cultivated in Peru's high Andean regions; they are characterized by containing bioactive compounds that prevent various degenerative diseases. The study aimed to evaluate the physicochemical and sensory quality in chips of native potato clones grown at 3496 m altitude, for which the potatoes were cut into slices and fried in extra virgin olive oil at 180 °C for 200 s.

View Article and Find Full Text PDF

Propolis is a substance with significant anti-inflammatory, anticancer, and antiviral activity, which could be used more efficiently at the nano level as an additive in the food industry. The aim was to obtain and characterize nanoencapsulated multi-floral propolis from the agro-ecological region of Apurimac, Peru. For nanoencapsulation, 5% ethanolic extracts propolis with 0.

View Article and Find Full Text PDF

Ethanolic extracts of propolis and bee honey contain substances beneficial to human health. Mixtures of wall materials were compared in spray-drying microencapsulation of ethanolic extracts of propolis and bee honey rich in bioactive compounds. Maltodextrin and tara gum were used to obtain microencapsulates A, and modified native potato starch and tara gum were used for microencapsulates B.

View Article and Find Full Text PDF

Ferropenic anemy is the leading iron deficiency disease in the world. The aim was to encapsulate erythrocytes extracted from the blood of Cavia porcellus, in matrices of tara gum and native potato starch. For microencapsulation, solutions were prepared with 20% erythrocytes; and encapsulants at 5, 10, and 20%.

View Article and Find Full Text PDF