Publications by authors named "Jenny A Cappuccio"

Yersinia pestis enters host cells and evades host defenses, in part, through interactions between Yersinia pestis proteins and host membranes. One such interaction is through the type III secretion system, which uses a highly conserved and ordered complex for Yersinia pestis outer membrane effector protein translocation called the injectisome. The portion of the injectisome that interacts directly with host cell membranes is referred to as the translocon.

View Article and Find Full Text PDF

Investigators of bioagent incidents or interdicted materials need validated, independent analytical methods that will allow them to distinguish between recently made bioagent samples versus material drawn from the archives of a historical program. Heterotrophic bacteria convert the carbon in their food sources, growth substrate or culture media, into the biomolecules they need. The F(14)C (fraction modern radiocarbon) of a variety of media, Bacillus spores, and separated proteins from Bacillus spores was measured by accelerator mass spectrometry (AMS).

View Article and Find Full Text PDF

Heterogeneity is a fact that plagues the characterization and application of many self-assembled biological constructs. The importance of obtaining particle homogeneity in biological assemblies is a critical goal, as bulk analysis tools often require identical species for reliable interpretation of the results-indeed, important tools of analysis such as x-ray diffraction typically require over 90% purity for effectiveness. This issue bears particular importance in the case of lipoproteins.

View Article and Find Full Text PDF

To better understand the incorporation of membrane proteins into discoidal nanolipoprotein particles (NLPs) we have used atomic force microscopy (AFM) to image and analyze NLPs assembled in the presence of bacteriorhodopsin (bR), lipoprotein E4 n-terminal 22k fragment scaffold and DMPC lipid. The self-assembly process produced two distinct NLP populations: those containing inserted bR (bR-NLPs) and those that did not (empty-NLPs). The bR-NLPs were distinguishable from empty-NLPs by an average increase in height of 1.

View Article and Find Full Text PDF

Membrane-associated proteins and protein complexes account for approximately a third or more of the proteins in the cell (1, 2). These complexes mediate essential cellular processes; including signal transduc-tion, transport, recognition, bioenergetics and cell-cell communication. In general, membrane proteins are challenging to study because of their insolubility and tendency to aggregate when removed from their protein lipid bilayer environment.

View Article and Find Full Text PDF

Here we demonstrate rapid production of solubilized and functional membrane protein by simultaneous cell-free expression of an apolipoprotein and a membrane protein in the presence of lipids, leading to the self-assembly of membrane protein-containing nanolipoprotein particles (NLPs). NLPs have shown great promise as a biotechnology platform for solubilizing and characterizing membrane proteins. However, current approaches are limited because they require extensive efforts to express, purify, and solubilize the membrane protein prior to insertion into NLPs.

View Article and Find Full Text PDF

We report a cell-free approach for expressing and inserting integral membrane proteins into water-soluble particles composed of discoidal apolipoprotein-lipid bilayers. Proteins are inserted into the particles, circumventing the need of extracting and reconstituting the product into membrane vesicles. Moreover, the planar nature of the membrane support makes the protein freely accessible from both sides of the lipid bilayer.

View Article and Find Full Text PDF

Self-assembly of purified apolipoproteins and phospholipids results in the formation of nanometer-sized lipoprotein complexes, referred to as nanolipoprotein particles (NLPs). These bilayer constructs are fully soluble in aqueous environments and hold great promise as a model system to aid in solubilizing membrane proteins. Size variability in the self-assembly process has been recognized for some time, yet limited studies have been conducted to examine this phenomenon.

View Article and Find Full Text PDF

Spontaneous interaction of purified apolipoproteins and phospholipids results in formation of lipoprotein particles with nanometer-sized dimensions; we refer to these assemblies as nanolipoprotein particles or NLPs. These bilayer constructs can serve as suitable mimetics of biological membranes and are fully soluble in aqueous environments. We made NLPs from dimyristoylphospatidylcholine (DMPC) in combination with each of four different apolipoproteins: apoA-I, Delta-apoA-I fragment, apoE4 fragment, and apolipophorin III (apoLp-III) from the silk moth B.

View Article and Find Full Text PDF

A cross-linked histidine-phenol compound was synthesized as a chemical analogue of the active site of cytochrome c oxidase. The structure of the cross-linked compound (compound 1) was verified by IR, (1)H and (13)C NMR, mass spectrometry, and single-crystal X-ray analysis. Spectrophotometric titrations indicated that the pK(a) of the phenolic proton on compound 1 (8.

View Article and Find Full Text PDF