Publications by authors named "Jennissen H"

The constant release of human bone morphogenetic protein 2 (rhBMP-2) in the picomolar range (Pico-Stat) from PDLLA-biohybrids led to the detection of intrinsic novel pro- and anti-angiogenic functions of this cytokine. As integrant part in this perspective of previous work, first evidence for the binding of rhBMP-2, as an , to allosteric angiogenic receptors in cocultures of human endothelial cells is reported.

View Article and Find Full Text PDF

Purpose: Aseptic loosening in total joint replacement due to insufficient osteointegration is an unsolved problem in orthopaedics. The purpose of the study is to obtain a picture of the initial protein adsorption layer on femoral endoprosthetic surfaces as the key to the initiation of osseointegration.

Experimental Design: The paper describes the first study of femoral stem explants from patients for proteome analysis of the primary protein layer.

View Article and Find Full Text PDF

The surface design of titanium implants influences not only the local biological reactions but also affects at least the clinical result in orthopaedic application. During the last decades, strong efforts have been made to improve osteointegration and prevent bacterial adhesion to these surfaces. Following the rule of "smaller, faster, cheaper", nanotechnology has encountered clinical application.

View Article and Find Full Text PDF

A functionalization is required for calcium phosphate-based bone substitute materials to achieve an entire bone remodeling. In this study it was hypothesized that a tailored composite of tricalcium phosphate and a bioactive glass can be loaded sufficiently with rhBMP-2 for functionalization. A composite of 40 wt% tricalcium phosphate and 60 wt% bioactive glass resulted in two crystalline phases, wollastonite and rhenanite after sintering.

View Article and Find Full Text PDF

The main objectives of the study described below were of two-fold nature: (1) to examine if rhBMP-2-biocoated implants in a pig model could lead to ectopic bone formation and (2) if quantitative and/or qualitative differences could be found between adhesively and covalently bonded BMP II using the scintigraphic method. In order to examine these central questions, 26 Göttingen minipigs were allocated to three groups with a control group (n=7) and two study groups (n=9 each) receiving one of three implant types: (a) chromosulfuric acid treated titanium surface as control, (b) non-covalently bonded BMP-2, and (c) covalently bonded and immobilized rhBMP-2. Each animal received four barbell-shaped implants, one in the proximal and distal metaphysis of each femur.

View Article and Find Full Text PDF

The selective degradation of many proteins in eukaryotic cells is carried out by the ubiquitin system. In this pathway, proteins are targeted for degradation by covalent ligation to ubiquitin, a highly conserved protein [1]. Ubiquitylated proteins were degraded by the 26S proteasome in an ATP-depended manner.

View Article and Find Full Text PDF

Recombinant human BMP-2 (rhBMP-2) was immobilized non-covalently and covalently as a monolayer on plasma vapour deposited (PVD) porous commercially pure titanium surfaces in amounts of 5-8 μg cm(-2), providing a ca. 10-fold increase vs. previously reported values.

View Article and Find Full Text PDF

Chicken eggs in the early phase of breeding are between in vitro and in vivo systems and provide a vascular test environment not only to study angiogenesis but also to study tumorigenesis. After the chick chorioallantoic membrane (CAM) has developed, its blood vessel network can be easily accessed, manipulated and observed and therefore provides an optimal setting for angiogenesis assays. Since the lymphoid system is not fully developed until late stages of incubation, the chick embryo serves as a naturally immunodeficient host capable of sustaining grafted tissues and cells without species-specific restrictions.

View Article and Find Full Text PDF

Recombinant human bone morphogenetic protein-2 (rhBMP-2) is a growth factor of the transforming growth factor-beta superfamily. Members of this protein family are involved in the development of various mammalian tissues, including the inner ear. As their notations indicate, they also have well-known effects on bone formation and regeneration.

View Article and Find Full Text PDF

Nanoparticle (NP)-based delivery has gained importance for improving the potency of therapeutic agents. The bovine serum albumin (BSA) NPs, obtained by a coacervation process, was modified by electrostatic adsorption of cationic polyethylenimine (PEI) to NP surfaces for delivery of bone-inducing growth factor, bone morphogenetic protein-2 (BMP-2). Different concentrations of PEI were utilized for coating BSA NPs to stabilize the colloidal system and to control the release of BMP-2.

View Article and Find Full Text PDF

We hypothesized that 20S proteasome is present and functional in the extracellular alveolar space in humans. Proteasomal activity was measured in bronchoalveolar lavage (BAL) supernatant from eight humans using specific proteasomal fluorogenic substrates and I(125)-albumin with and without specific proteasome inhibitors. Furthermore, gelfiltration, Western blot technique, and mass spectrometry were applied for proteasome characterization.

View Article and Find Full Text PDF

The aim of the present study was to investigate bone formation to recombinant human bone morphogenetic protein-2 (rhBMP-2)-biocoated and rhBMP-2-nonbiocoated titanium implants after implantation in dogs. Implantation of sand-blasted and acid-etched (C), chromosulfuric acid surface-enhanced (CSA), and rhBMP-2-biocoated CSA [BMP-A: noncovalently immobilized rhBMP-2 (596 ng/cm(2)), BMP-B: covalently immobilized rhBMP-2 (819 ng/cm(2))] implants was performed in both the mandible and tibia of dogs. After 4 weeks of healing, the percentage of direct bone to implant contact (BIC) and the induced bone density (BD) at a distance of less than and greater than 1 mm adjacent to each implant was assessed.

View Article and Find Full Text PDF

A rational application of hydrophobic interaction chromatography (HIC) to the purification of proteins has remained an enigma in spite of over 30 years of research. The critical hydrophobicity parameter, which can be determined from a concentration series of n-alkyl Sepharose 4B (Seph-Cn) offers the possibility of adapting the HIC gel to the needs of purification. To this end a library of HIC gels (Seph-C4 to Seph-C6) of different immobilized alkyl residue concentrations was synthesized and tested with purified bovine fibrinogen.

View Article and Find Full Text PDF

Hydrophobic interaction chromatography (HIC) is one of the basic purification procedures in the biosciences. However, because of its complexity, it has not gained the same foothold in the methodological repertoire of protein chemistry as has affinity chromatography or ion exchange chromatography. This is mainly a result of the lack of a general optimization procedure for the reversible adsorption and elution of a novel protein to be purified.

View Article and Find Full Text PDF

A method for eliminating the mass transport limitation on biosensor surfaces is introduced. The measurement of macromolecular binding kinetics on plane surfaces is the key objective of many evanescent wave (e.g.

View Article and Find Full Text PDF

Human recombinant bone morphogenetic protein-2 (rhBMP-2) immobilized on the surface of metal implants can facilitate osseointegration. Here, we describe a cell reporter assay useful for quantifying small amounts of immobilized rhBMP-2 on various materials. The peptide was dotted and heat-fixed on titanium, 316L stainless steel, nitrocellulose, or glass, and its distribution was monitored by in situ biotinylation followed by detection with the avidin-biotin method.

View Article and Find Full Text PDF

A concept and methodology are presented for the direct biocoating of implantable metals like titanium and stainless steel with bone morphogenetic protein 2 (BMP-2) for future applications as cementless bone or dental prostheses. Such bioactive surfaces can influence cells and tissues by chemotactic as well as juxtacrine mechanisms. Reference is made to first experiments in sheep and rabbits in which BMP-2 coatings impressively increased the osteoinductive potential of titanium implants.

View Article and Find Full Text PDF

The ubiquitin-proteasome pathway is regarded as playing a crucial role in protein breakdown in inflammation and sepsis as well as in the regulation of inflammatory cell responses. In this pathway, ubiquitylation of target proteins is believed to act as a recognition signal for degradation by the 26S proteasome. As yet neither the ubiquitylation rate of cytosolic proteins, as a result of the total ubiquitin-protein ligase (tUbPL) activity, nor the specific ubiquitylation of calmodulin (ubiquitin-calmodulin ligase, uCaM-synthetase) has been determined in human mononuclear cells.

View Article and Find Full Text PDF

Ubiquitin is often implicated as a specific tag for protein degradation via the ubiquitin system although only a limited number of physiological proteins have been shown to be degraded in their native tissues via this pathway in vivo. Ubiquitin may also, however, have other functions of a regulatory nature (non-catabolic ubiquitylation). The ubiquitylation of calmodulin appears to fall into this category.

View Article and Find Full Text PDF

Calmodulin is the universal calcium modulator in eukaryotic cells. Its biological activity is closely regulated by the second messenger Ca2+. Previous studies in cell-free extracts [Laub, M.

View Article and Find Full Text PDF