Purpose: Talazoparib is an inhibitor of the poly (ADP-ribose) polymerase (PARP) family of enzymes and is FDA-approved for patients with (suspected) deleterious germline BRCA1/2-mutated, HER2‑negative, locally advanced or metastatic breast cancer. Because knowledge of the pharmacodynamic (PD) effects of talazoparib in patients has been limited to studies of PARP enzymatic activity (PARylation) in peripheral blood mononuclear cells, we developed a study to assess tumoral PD response to talazoparib treatment (NCT01989546).
Methods: We administered single-agent talazoparib (1 mg/day) orally in 28-day cycles to adult patients with advanced solid tumors harboring (suspected) deleterious BRCA1 or BRCA2 mutations.
Purpose: This study aimed at characterizing indotecan population pharmacokinetics and explore the indotecan-neutropenia relationship in patients with solid tumors.
Methods: Population pharmacokinetics were assessed using nonlinear mixed-effects modeling of concentration data from two first-in-human phase 1 trials evaluating different dosing schedules of indotecan. Covariates were assessed in a stepwise manner.
Purpose: Soft-tissue sarcomas (STS) are a rare, heterogeneous group of mesenchymal tumors. For decades the mainstay of treatment for advanced, unresectable STS has been palliative chemotherapy. High levels of activated MET receptor have been reported in various sarcoma cell lines, together with elevated vascular endothelial growth factor (VEGF) levels in patients with STS, suggesting that dual targeting of the VEGF and MET pathways with the multi-receptor tyrosine kinase inhibitor cabozantinib would result in clinical benefit in this population.
View Article and Find Full Text PDFPurpose: The Wee1 kinase inhibitor adavosertib abrogates cell-cycle arrest, leading to cell death. Prior testing of twice-daily adavosertib in patients with advanced solid tumors determined the recommended phase II dose (RPh2D). Here, we report results for once-daily adavosertib.
View Article and Find Full Text PDFBackground: TRC102 inhibits base excision repair by binding abasic sites and preventing AP endonuclease processing; it potentiates the activity of alkylating agents, including temozolomide, in murine models. In published xenograft studies, TRC102 enhanced the antitumor effect of temozolomide regardless of cell line genetic characteristics, e.g.
View Article and Find Full Text PDFPurpose: Following promising responses to the DNA methyltransferase (DNMT) inhibitor 5-fluoro-2'-deoxycytidine (FdCyd) combined with tetrahydrouridine (THU) in phase 1 testing, we initiated a non-randomized phase 2 study to assess response to this combination in patients with advanced solid tumor types for which tumor suppressor gene methylation is potentially prognostic. To obtain pharmacodynamic evidence for DNMT inhibition by FdCyd, we developed a novel method for detecting expression of tumor suppressor protein p16/INK4A in circulating tumor cells (CTCs).
Methods: Patients in histology-specific strata (breast, head and neck [H&N], or non-small cell lung cancers [NSCLC] or urothelial transitional cell carcinoma) were administered FdCyd (100 mg/m) and THU (350 mg/m) intravenously 5 days/week for 2 weeks, in 28-day cycles, and progression-free survival (PFS) rate and objective response rate (ORR) were evaluated.
Lessons Learned: The combination of the antiangiogenic agent ziv-aflibercept and the heat shock protein 90 inhibitor ganetespib was associated with several serious and unexpected adverse events and was not tolerable on the dosing schedule tested.Studies such as these emphasize the importance of considering overlapping toxicities when designing novel treatment combination regimens.
Background: Although inhibition of angiogenesis is an effective strategy for cancer treatment, acquired resistance to antiangiogenic therapy is common.
Background Molecular chaperone targeting has shown promise as a therapeutic approach in human cancers of various histologies and genetic backgrounds. The purine-scaffold inhibitor PU-H71 (NSC 750424), selective for Hsp90 in epichaperome networks, has demonstrated antitumor activity in multiple preclinical cancer models. The present study was a first in-human trial of PU-H71 aimed at establishing its safety and tolerability and characterizing its pharmacokinetic (PK) profile on a weekly administration schedule in human subjects with solid tumors refractory to standard treatments.
View Article and Find Full Text PDFPurpose: Wee1 tyrosine kinase phosphorylates and inactivates cyclin-dependent kinase (Cdk) 1/2 in response to DNA damage. AZD1775 is a first-in-class inhibitor of Wee1 kinase with single-agent antitumor activity in preclinical models. We conducted a phase I study of single-agent AZD1775 in adult patients with refractory solid tumors to determine its maximum-tolerated dose (MTD), pharmacokinetics, and modulation of phosphorylated Tyr15-Cdk (pY15-Cdk) and phosphorylated histone H2AX (γH2AX) levels in paired tumor biopsies.
View Article and Find Full Text PDF