A large part of the mammalian genome is transcribed into noncoding RNAs. Long noncoding RNAs (lncRNAs) have emerged as critical epigenetic regulators of gene expression. Distinct molecular mechanisms allow lncRNAs either to activate or to repress gene expression, thereby participating in the regulation of cellular and tissue function.
View Article and Find Full Text PDFBackground: Long non-coding RNAs (lncRNAs) constitute a novel class of non-coding RNAs. LncRNAs regulate gene expression, thus having the possibility to modulate disease progression. In this study, we investigated the changes of lncRNAs expression in the heart after myocardial infarction (MI).
View Article and Find Full Text PDFBackground: Adenosine may have beneficial effects on left ventricular function after myocardial infarction (MI), but the magnitude of this effect on remote and MI areas is controversial. We assessed the long-term effects of adenosine after MI using electrocardiogram-triggered 18 F-fluorodeoxyglucose positron emission tomography.
Methods: Wistar rats were subjected to coronary ligation and randomized into three groups treated daily for 2 months by NaCl (control; n = 7), 2-chloroadenosine (CADO; n = 8) or CADO with 8-sulfophenyltheophilline, an antagonist of adenosine receptors (8-SPT; n = 8).
Background: Left ventricular (LV) remodeling after acute myocardial infarction is associated with adverse prognosis. MicroRNAs (miRNAs) regulate the expression of several genes involved in LV remodeling. Our aim was to identify miRNAs associated with LV remodeling after acute myocardial infarction.
View Article and Find Full Text PDF