Phosphorus (P) site assessment is used nationally and internationally to assess the vulnerability of agricultural fields to P loss and identify high-risk areas controlling watershed P export. Current efforts to update P site assessment tools must ensure that these tools are representative of the range of conditions to which they will be applied. We sought to identify key parameters available in public GIS data that are descriptive of potential source areas in Pennsylvania and that ensure that modifications of the P Index span all feasible parameter combinations.
View Article and Find Full Text PDFCritical source area identification through phosphorus (P) site assessment is a fundamental part of modern nutrient management planning in the United States, yet there has been only sparse testing of the many versions of the P Index that now exist. Each P site assessment tool was developed to be applicable across a range of field conditions found in a given geographic area, making evaluation extremely difficult. In general, evaluation with in-field monitoring data has been limited, focusing primarily on corroborating manure and fertilizer "source" factors.
View Article and Find Full Text PDFWatershed models such as the Soil Water Assessment Tool (SWAT) and the Agricultural Policy Environmental EXtender (APEX) are widely used to assess the fate and transport of agricultural nutrient management practices on soluble and particulate phosphorus (P) loss in runoff. Soil P-cycling routines used in SWAT2012 revision 586, however, do not simulate the short-term effects of applying a concentrated source of soluble P, such as manure, to the soil surface where it is most vulnerable to runoff. We added a new set of soil P routines to SWAT2012 revision 586 to simulate surface-applied manure at field and subwatershed scales within Mahantango Creek watershed in south-central Pennsylvania.
View Article and Find Full Text PDFMost states in the USA have adopted P Indexing to guide P-based management of agricultural fields by identifying the relative risk of P loss at farm and watershed scales. To a large extent, this risk is based on hydrologic principles that frequently occurring storms can initiate surface runoff from fields. Once initiated, this hydrological pathway has a high potential to transport P to the stream.
View Article and Find Full Text PDF