Background: Post-traumatic stress disorder (PTSD) is a highly prevalent psychiatric disorder that can become chronic and debilitating when left untreated. Available pharmacotherapies are limited, take weeks to show modest benefit and remain ineffective for up to 40% of patients. Methylone is currently in clinical development for the treatment of PTSD.
View Article and Find Full Text PDFChemotherapy-induced peripheral neuropathy (CIPN) is a major unmet medical need with limited treatment options. Despite different mechanisms of action, diverse chemotherapeutics can cause CIPN through a converged pathway─an active axon degeneration program that engages the dual leucine zipper kinase (DLK). DLK is a neuronally enriched kinase upstream in the MAPK-JNK cascade, and while it is dormant under physiological conditions, DLK mediates a core mechanism for neuronal injury response under stress conditions, making it an attractive target for treatment of neuronal injury and neurodegenerative diseases.
View Article and Find Full Text PDFIntroduction: Selective serotonin reuptake inhibitor (SSRI) antidepressants represent first-line pharmacological treatment for a variety of neuropsychiatric illnesses, including major depressive disorder (MDD), anxiety, and post-traumatic stress disorder (PTSD), which show high rates of comorbidity. SSRIs have a delayed onset of action. Most patients do not show significant effects until 4-8 weeks of continuous treatment, have impairing side effects and as many as 40% of patients do not respond.
View Article and Find Full Text PDFSerotonin receptor 4 (5-HTR) plays an important role in regulating mood, anxiety, and cognition, and drugs that activate this receptor have fast-acting antidepressant (AD)-like effects in preclinical models. However, 5-HTR is widely expressed throughout the central nervous system (CNS) and periphery, making it difficult to pinpoint the cell types and circuits underlying its effects. Therefore, we generated a Cre-dependent 5-HTR knockout mouse line to dissect the function of 5-HTR in specific brain regions and cell types.
View Article and Find Full Text PDFFragile X syndrome (FXS) is the most common inherited form of intellectual disability and autism. FXS is also accompanied by attention problems, hyperactivity, anxiety, aggression, poor sleep, repetitive behaviors, and self-injury. Recent work supports the role of γ-aminobutyric-acid (GABA), the primary inhibitory neurotransmitter in the brain, in mediating symptoms of FXS.
View Article and Find Full Text PDFLocal mRNA translation in growing axons allows for rapid and precise regulation of protein expression in response to extrinsic stimuli. However, the role of local translation in mature CNS axons is unknown. Such a mechanism requires the presence of translational machinery and associated mRNAs in circuit-integrated brain axons.
View Article and Find Full Text PDFBackground: Non-steroidal anti-inflammatory drugs such as indomethacin are widely used to treat inflammatory diseases and manage pain, fever and inflammation in several conditions, including neuropsychiatric disorders. Although they predominantly function by inhibiting cyclooxygenase (COX) activity, important COX-independent actions also occur. These actions could be responsible for the adverse side effects associated with chronic and/or high dose usage of this popular drug class.
View Article and Find Full Text PDFAdult neurogenesis in the hippocampus subgranular zone is associated with the etiology and treatment efficiency of depression. Factors that affect adult hippocampal neurogenesis have been shown to contribute to the neuropathology of depression. Glutamate, the major excitatory neurotransmitter, plays a critical role in different aspects of neurogenesis.
View Article and Find Full Text PDFBackground: The high rate of comorbidity between depression and cocaine addiction suggests shared molecular mechanisms and anatomical pathways. Limbic structures, such as the nucleus accumbens (NAc), play a crucial role in both disorders, yet how different cell types within these structures contribute to the pathogenesis remains elusive. Downregulation of p11 (S100A10), specifically in the NAc, elicits depressive-like behaviors in mice, but its role in drug addiction is unknown.
View Article and Find Full Text PDFStudies of the multifunctional protein p11 (also known as S100A10) are shedding light on the molecular and cellular mechanisms underlying depression. Here, we review data implicating p11 in both the amplification of serotonergic signalling and the regulation of gene transcription. We summarize studies demonstrating that levels of p11 are regulated in depression and by antidepressant regimens and, conversely, that p11 regulates depression-like behaviours and/or responses to antidepressants.
View Article and Find Full Text PDFA large number of studies have demonstrated that the nucleus accumbens (NAC) is a critical site in the neuronal circuits controlling reward responses, motivation, and mood, but the neuronal cell type(s) underlying these processes are not yet known. Identification of the neuronal cell types that regulate depression-like states will guide us in understanding the biological basis of mood and its regulation by diseases like major depressive disorder. Taking advantage of recent findings demonstrating that the serotonin receptor chaperone, p11, is an important molecular regulator of depression-like states, here we identify cholinergic interneurons (CINs) as a primary site of action for p11 in the NAC.
View Article and Find Full Text PDFOur understanding of current treatments for depression, and the development of more specific therapies, is limited by the complexity of the circuits controlling mood and the distributed actions of antidepressants. Although the therapeutic efficacy of serotonin-specific reuptake inhibitors (SSRIs) is correlated with increases in cortical activity, the cell types crucial for their action remain unknown. Here we employ bacTRAP translational profiling to show that layer 5 corticostriatal pyramidal cells expressing p11 (S100a10) are strongly and specifically responsive to chronic antidepressant treatment.
View Article and Find Full Text PDFNeurogenesis continues in the dentate gyrus of the hippocampus throughout life in mammals. This process is influenced by daily activities such as exercise, learning, and stress and may contribute to certain forms of hippocampus-dependent learning and memory. Adult hippocampal neurogenesis is also subject to regulation by antidepressant treatment, including chronic treatment with antidepressant drugs or electroconvulsive seizure (ECS) therapy.
View Article and Find Full Text PDFAntiinflammatory drugs achieve their therapeutic actions at least in part by regulation of cytokine formation. A "cytokine hypothesis" of depression is supported by the observation that depressed individuals have elevated plasma levels of certain cytokines compared with healthy controls. Here we investigated a possible interaction between antidepressant agents and antiinflammatory agents on antidepressant-induced behaviors and on p11, a biochemical marker of depressive-like states and antidepressant responses.
View Article and Find Full Text PDFp11 is an adaptor protein which binds to serotonin 5-HT(1B) receptors and 5-HT(4) receptors and regulates their localization at the cell surface. In the present study, we examined to what extent p11 containing neurons co-expressed 5-HT(1B)R and/or 5-HT(4)R in cerebral cortex, hippocampus, cerebellum and caudate-putamen. A triple-labeling immunohistochemical approach was taken using antibodies to detect native p11 and 5-HT(1B)R combined with visualization of EGFP driven under the 5-HT(4)R promoter in BAC-transgenic mice.
View Article and Find Full Text PDFThe etiology of major depression remains unknown, but dysfunction of serotonergic signaling has long been implicated in the pathophysiology of this disorder. p11 is an S100 family member recently identified as a serotonin 1B [5-hydroxytryptamine 1B (5-HT(1B))] and serotonin 4 (5-HT(4)) receptor-binding protein. Mutant mice in which p11 is deleted show depression-like behaviors, suggesting that p11 may be a mediator of affective disorder pathophysiology.
View Article and Find Full Text PDFBackground: The protein p11 (also called S100A10) is downregulated in human and rodent depressive-like states. Considerable experimental evidence also implicates p11 in the mechanism of action of antidepressant drugs and electroconvulsive seizures, in part due to its interaction with specific serotonin receptors. Brain-derived neurotrophic factor (BDNF) has been linked to the therapeutic activity of antidepressants in rodent models and humans.
View Article and Find Full Text PDFBackground: Chronic but not acute treatment with antidepressants increases hippocampal neurogenesis. Because chronic treatment with antidepressants also upregulates p11, we hypothesized that p11 might regulate effects of antidepressants on aspects of neurogenesis.
Methods: Fluoxetine was administered chronically to wild-type (WT) and p11 knockout (KO) mice.
Dopamine neurotransmission controls motor and perseverative behavior, is mediated by protein phosphorylation, and may be perturbed in disorders of attention and hyperactivity. To assess the role of casein kinase I (CK1) in the regulation of dopamine signaling, we generated a genetically modified mouse line that overexpresses CK1delta (CK1delta OE) specifically in the forebrain. Overexpression was confirmed both at the mRNA and at the protein levels.
View Article and Find Full Text PDFThis study extends earlier work on the role of vascular endothelial growth factor (VEGF) in the actions of antidepressant treatment in two key areas. First, by determining the requirement for VEGF in the actions of a 5-HT selective reuptake inhibitor (SSRI), fluoxetine in behavioral models of depression/antidepressant response; and second, by examining the role of the 5-HT1A receptor subtype in the regulation of VEGF, and the cellular localization of antidepressant regulation of VEGF expression. The results show that pharmacological inhibition of VEGF receptor signaling blocks the behavioral actions of fluoxetine in rats subjected to chronic unpredictable stress.
View Article and Find Full Text PDFp11 (S100A10), a member of a large family of S100 proteins, interacts with serotonin receptor 1B (5-HTR1B), modulates 5-HT1B receptor signal transduction, and is required for antidepressant responses to activation of this receptor. In the current study, we investigated the specificity of the interaction between 5-HTR1B and p11 by screening brain-expressed S100 proteins against serotonin and noradrenergic receptors. The data indicate that p11 is unique among its family members for its interactions with defined serotonin receptors.
View Article and Find Full Text PDFBackground: Although it has been postulated for many years that depression is associated with loss of synapses, primarily in the hippocampus, and that antidepressants facilitate synapse growth, we still lack ultrastructural evidence that changes in depressive behavior are indeed correlated with structural synaptic modifications.
Methods: We analyzed hippocampal spine synapses of male rats (n=127) with electron microscopic stereology in association with performance in the learned helplessness paradigm.
Results: Inescapable footshock (IES) caused an acute and persistent loss of spine synapses in each of CA1, CA3, and dentate gyrus, which was associated with a severe escape deficit in learned helplessness.
All classes of antidepressants increase hippocampal cell proliferation and neurogenesis, which contributes, in part, to the behavioral actions of these treatments. Among antidepressant treatments, electroconvulsive seizure (ECS) is the most robust stimulator of hippocampal cell proliferation and the most efficacious treatment for depression, but the cellular mechanisms underlying the actions of ECS are unknown. To address this question, we investigated the effect of ECS on proliferation of neural stem-like and/or progenitor cells in the subgranular zone of rat dentate gyrus.
View Article and Find Full Text PDFOngoing neurogenesis in the adult hippocampus is thought to play a role in learning and memory processes, and in response to antidepressant treatments. Low doses of irradiation (IRR) produce a significant long-lasting inhibitory effect on hippocampal neurogenesis that correlates with long-lasting behavioral deficits. Here we report that electroconvulsive seizure (ECS), which robustly increases adult neurogenesis in naïve animals, also reverses the disruption of neurogenesis produced by IRR exposure.
View Article and Find Full Text PDF