Background: Myocyte death occurs by necrosis and caspase-mediated apoptosis in myocardial infarction (MI). In vitro studies suggest caspase activation causes myocardial contractile protein degradation without inducing apoptosis. Thus, caspase activation may evoke left ventricular (LV) remodeling through independent processes post-MI.
View Article and Find Full Text PDFBackground: Increased myocardial interstitial levels of endothelin (ET) occur during cardioplegic arrest (CA) and may contribute to contractile dysfunction. Endothelin receptor transduction involves the protein kinase-C (PKC) family comprised of multiple isoforms with diverse functions. Which PKC isoforms may be involved in ET-induced contractile dysfunction after CA remains unknown.
View Article and Find Full Text PDFLeft ventricular (LV) remodeling occurs after myocardial infarction (MI), and the matrix metalloproteinases (MMPs) contribute to adverse LV remodeling after MI. Short-term pharmacological MMP inhibition (MMPi; days to weeks) in animal models of MI have demonstrated a reduction in adverse LV remodeling. However, the long-term effects (months) of MMPi on survival and LV remodeling after MI have not been examined.
View Article and Find Full Text PDFBackground: A cause-effect relationship has been established between MMP activation and left ventricular (LV) remodeling following myocardial infarction. The goal of the present study was to examine a selective MMP inhibitor (sMMPi) strategy that effectively spared MMP-1, -3, and -7 with effect to regional and global left ventricular remodeling in a pig model of myocardial infarction.
Methods And Results: Pigs instrumented with coronary snares and radiopaque markers within the area at risk were randomized to myocardial infarction-only (n = 10) or sMMPi (PGE-530742, 1 mg/kg TID) begun 3 days prior to myocardial infarction.
Left ventricular hypertrophy (LVH) is a leading cause of congestive heart failure. The exact mechanisms that control cardiac growth and regulate the transition to failure are not fully understood, in part due to the lack of a complete inventory of proteins associated with LVH. We investigated the proteomic basis of LVH using the transverse aortic constriction model of pressure overload in mice coupled with a multidimensional approach to identify known and novel proteins that may be relevant to the development and maintenance of LVH.
View Article and Find Full Text PDFBackground: Whether mechanical restraint of the left ventricle (LV) can influence remodeling after myocardial infarction (MI) remains poorly understood. This study surgically placed a cardiac support device (CSD) over the entire LV and examined LV and myocyte geometry and function after MI.
Methods And Results: Post-MI sheep (35 to 45 kg; MI size, 23+/-2%) were randomized to placement of the CorCap CSD (Acorn Cardiovascular, Inc) (MI+CSD; n=6) or remained untreated (MI only; n=5).
Alterations in matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) have been implicated in adverse left ventricular (LV) remodeling after myocardial infarction (MI). However, the direct mechanistic role of TIMPs in the post-MI remodeling process has not been completely established. The goal of this project was to define the effects of altering endogenous MMP inhibitory control through combined genetic and pharmacological approaches on post-MI remodeling in mice.
View Article and Find Full Text PDFHyperkalemic cardioplegic arrest (HCA) and rewarming evokes postoperative myocyte contractile dysfunction, a phenomenon of particular importance in settings of preexisting left ventricular (LV) failure. Caspases are intracellular proteolytic enzymes recently demonstrated to degrade myocardial contractile proteins. This study tested the hypothesis that myocyte contractile dysfunction induced by HCA could be ameliorated with caspase inhibition in the setting of compromised myocardial function.
View Article and Find Full Text PDFBackground: Exposure of left ventricular (LV) myocytes to simulated hyperkalemic cardioplegic arrest (HCA) has been demonstrated to perturb ionic homeostasis and adversely affect myocyte contractility on rewarming. Altered ionic homeostasis can cause cytosolic activation of the caspases. While caspases participate in apoptosis, these proteases can degrade myocyte contractile proteins, and thereby alter myocyte contractility.
View Article and Find Full Text PDFObjective: Myocyte death occurs by necrosis and caspase-mediated apoptosis in the setting of myocardial infarction. In vitro studies suggest that caspase activation within myocytes causes contractile protein degradation without inducing cell death. Thus, caspase activation may evoke left ventricular remodeling through 2 independent processes post-myocardial infarction.
View Article and Find Full Text PDFBackground: Ischemia-reperfusion (IR) injury causes myocardial dysfunction in part through intracellular calcium overload. A recently described pharmacologic compound, MCC-135 (5-methyl-2-[1-piperazinyl] benzenesulfonic acid monohydrate, Mitsubishi Pharma Corporation), alters intracellular calcium levels. This project tested the hypothesis that MCC-135 would influence regional myocardial contractility when administered at reperfusion and after a prolonged period of ischemia.
View Article and Find Full Text PDFJ Thorac Cardiovasc Surg
November 2003
Background: A mechanism for myocardial dysfunction after ischemia and reperfusion is Na(+)/H(+) exchanger activation. Although past in vivo models of limited ischemia and reperfusion intervals demonstrate that Na(+)/H(+) exchanger inhibition confers myocardial protection when administered at the onset of ischemia, the effect of Na(+)/H(+) exchanger inhibition on myocardial function after prolonged ischemia and reperfusion remains unknown. This investigation tested the hypothesis that Na(+)/H(+) exchanger inhibition instituted at reperfusion and after prolonged coronary occlusion in pigs would influence myocardial contractility independent of myocardial viability.
View Article and Find Full Text PDFBackground: A cause-and-effect relationship exists between matrix metalloproteinase (MMP) induction and left ventricular (LV) remodeling after myocardial infarction (MI). Whether broad-spectrum MMP inhibition is necessary and the timing at which MMP inhibition should be instituted after MI remain unclear. This study examined the effects of MMP-1 and MMP-7-sparing inhibition (sMMPi) on regional and global LV remodeling when instituted before or after MI.
View Article and Find Full Text PDFBackground: Elaboration of a number of bioactive substances, including adenosine, occurs in heart failure (HF). Adenosine, through the adenosine subtype 1 (A1) receptor, can reduce renal perfusion pressure and glomerular filtration rate and increase tubular sodium reabsorption, which can affect natriuresis and aquaresis. Accordingly, the present study examined the acute effects of selective A1 receptor blockade on hemodynamics and renal function in a model of HF.
View Article and Find Full Text PDF