Publications by authors named "Jennifer W Edmonds"

In the last decade there has been increased interest in the manipulation of rhizosphere microbial communities in soilless systems (hydroponics) through the addition of plant growth promoting microbes (PGPMs) to increase plant nutrition, lower plant stress response, and control pathogens. This method of crop management requires documenting patterns in communities living in plant roots throughout the growing season to inform decisions on timing of application and composition of the supplemental PGPM consortium. As a contribution to this effort, we measured changes in the bacterial community through early succession (first 26 days) in plant root biofilms growing in an indoor commercial aeroponic system where roots were sprayed with a mist of nutrient-amended water.

View Article and Find Full Text PDF

Renewable and bio-based transportation fuel sources can lower the life-cycle greenhouse gas emissions from vehicles. We present an initial assessment of ethyl 3-ethoxybutyrate (EEB) as a biofuel in terms of its performance as a fuel oxygenate and its persistence in the environment. EEB can be produced from ethanol and poly-3-hydroxybutyrate, a bacterial storage polymer that can be produced from non-food biomass and other organic feedstocks.

View Article and Find Full Text PDF

Ecological theory argues that the controls over ecosystem processes are structured hierarchically, with broader-scale drivers acting as constraints over the interactions and dynamics at nested levels of organization. In river ecosystems, these interactions may arise from broadscale variation in channel form that directly shapes benthic habitat structure and indirectly constrains resource supply and biological activity within individual reaches. To evaluate these interactions, we identified sediment characteristics, water chemistry, and denitrifier community structure as factors influencing benthic denitrification rates in a sixth-order river that flows through two physiographic provinces and the transitional zone between them, each with distinct geomorphological properties.

View Article and Find Full Text PDF

Rising sea levels and excessive water withdrawals upstream are making previously freshwater coastal ecosystems saline. Plant and animal responses to variation in the freshwater-saline interface have been well studied in the coastal zone; however, microbial community structure and functional response to seawater intrusion remains relatively unexplored. Here, we used molecular approaches to evaluate the response of the prokaryotic community to controlled changes in porewater salinity levels in freshwater sediments from the Altamaha River, Georgia, USA.

View Article and Find Full Text PDF

In anaerobic coastal sediments, hydrolytic and/or fermentative bacteria degrade polymeric material and produce labile intermediates, which are used by terminal metabolizers to complete the conversion of organic material to CO(2). We used molecular approaches to evaluate the response of two bacterial terminal metabolizer groups from a coastal tidal creek sediments, sulfate reducers and methanogens, to controlled changes in carbon resource supply. Tidal creek sediment bioreactors were established in April and August 2004.

View Article and Find Full Text PDF