Mistakes in trunk neural crest (NC) cell migration may lead to birth defects of the sympathetic nervous system (SNS) and neuroblastoma (NB) cancer. Receptor tyrosine kinase B (TrkB) and its ligand BDNF critically regulate NC cell migration during normal SNS development and elevated expression of TrkB is correlated with high-risk NB patients. However, in the absence of a model with in vivo interrogation of human NB cell and gene expression dynamics, the mechanistic role of TrkB in NB disease progression remains unclear.
View Article and Find Full Text PDFReptiles have great taxonomic diversity that is reflected in their morphology, ecology, physiology, modes of reproduction, and development. Interest in comparative and evolutionary developmental biology makes protocols for the study of reptile embryos invaluable resources. The relatively large size, seasonal breeding, and long gestation times of turtles epitomize the challenges faced by the developmental biologist.
View Article and Find Full Text PDFGenomic information from human patient samples of pediatric neuroblastoma cancers and known outcomes have led to specific gene lists put forward as high risk for disease progression. However, the reliance on gene expression correlations rather than mechanistic insight has shown limited potential and suggests a critical need for molecular network models that better predict neuroblastoma progression. In this study, we construct and simulate a molecular network of developmental genes and downstream signals in a 6-gene input logic model that predicts a favorable/unfavorable outcome based on the outcome of the four cell states including cell differentiation, proliferation, apoptosis, and angiogenesis.
View Article and Find Full Text PDF