Purpose: The novel scintillator-based system described in this study is capable of accurately and remotely measuring surface dose during Total Skin Electron Therapy (TSET); this dosimeter does not require post-exposure processing or annealing and has been shown to be re-usable, resistant to radiation damage, have minimal impact on surface dose, and reduce chances of operator error compared to existing technologies e.g. optically stimulated luminescence detector (OSLD).
View Article and Find Full Text PDFThis study demonstrates remote imaging for in vivo detection of radiation-induced tumor microstructural changes by tracking the diffusive spread of injected intratumor UV excited tattoo ink using Cherenkov-excited luminescence imaging (CELI). Micro-liter quantities of luminescent tattoo ink with UV absorption and visible emission were injected at a depth of 2 mm into mouse tumors prior to receiving a high dose treatment of radiation. X-rays from a clinical linear accelerator were used to excite phosphorescent compounds within the tattoo ink through Cherenkov emission.
View Article and Find Full Text PDFPurpose: Tattoo fiducials are commonly used in radiotherapy patient alignment, and recent studies have examined the use of UV-excited luminescent tattoo ink as a cosmetic substitute to make these visible under UV illumination. The goal of this study was to show how luminescent tattoo inks could be excited with MV radiation and imaged during beam delivery for direct visualization of field position.
Methods: A survey of nine UV-sensitive tattoo inks with various emission spectra were investigated using both UV and MV excitation.