Publications by authors named "Jennifer Solarczek"

Nanofiber meshes from electrospun chitosan, highly modified with biotin and arylazides, are well-suited for application as enzyme immobilization matrices. To test this, catalytically active biomolecules were immobilized onto photocrosslinked nanofibrous nonwovens consisting mainly of biotinylated fungal chitosan and a small amount (10 w%) of poly ethylene oxide. In this study, we show that over 10 μg eugenol oxidase per milligram dry polymer matrix can be loaded on UV-crosslinked chitosan nanofibers.

View Article and Find Full Text PDF

Halohydrin dehalogenases are promiscuous biocatalysts, which enable asymmetric ring opening reactions of epoxides with various anionic nucleophiles. However, despite the increasing interest in such asymmetric transformations, the substrate scope of G-type halohydrin dehalogenases toward cyclic epoxides has remained largely unexplored, even though this subfamily is the only one known to display activity with these sterically demanding substrates. Herein, we report on the exploration of the substrate scope of the two G-type halohydrin dehalogenases HheG and HheG2 and a newly identified, more thermostable member of the family, HheG3, with a variety of sterically demanding cyclic epoxides and anionic nucleophiles.

View Article and Find Full Text PDF

HheG from Ilumatobacter coccineus is a halohydrin dehalogenase with synthetically useful activity in the ring opening of cyclic epoxides with various small anionic nucleophiles. This enzyme provides access to chiral β-substituted alcohols that serve as building blocks in the pharmaceutical industry. Wild-type HheG suffers from low thermostability, which poses a significant drawback for potential applications.

View Article and Find Full Text PDF