Publications by authors named "Jennifer Simkin"

The details of how macrophages control different healing trajectories (regeneration vs. scar formation) remain poorly defined. Spiny mice (Acomys spp.

View Article and Find Full Text PDF

Purpose: Synovial fibrosis (SFb) formation and turnover attributable to knee osteoarthritis (KOA) can impart painful stiffness and persist following arthroplasty. To supplement joint conditioning aimed at maximizing peri-operative function, we evaluated the antifibrotic effect of Minoxidil (MXD) on formation of pyridinoline (Pyd) cross-links catalyzed by Plod2-encoded lysyl hydroxylase (LH)2b that strengthen newly synthesized type-I collagen (COL1) in fibroblastic synovial cells (FSCs) from KOA patients. MXD was predicted to decrease Pyd without significant alterations to Col1a1 transcription by FSCs stimulated with transforming growth factor (TGF)β1.

View Article and Find Full Text PDF

Background: Mammalian calvarium is composed of flat bones developed from two origins, neural crest, and mesoderm. Cells from both origins exhibit similar behavior but express distinct transcriptomes. It is intriguing to ask whether genes shared by both origins play similar or distinct roles in development.

View Article and Find Full Text PDF

De novo limb regeneration after amputation is restricted in mammals to the distal digit tip. Central to this regenerative process is the blastema, a heterogeneous population of lineage-restricted, dedifferentiated cells that ultimately orchestrates regeneration of the amputated bone and surrounding soft tissue. To investigate skeletal regeneration, we made use of spatial transcriptomics to characterize the transcriptional profile specifically within the blastema.

View Article and Find Full Text PDF

Mouse digit amputation provides a useful model of bone growth after injury, in that the injury promotes intramembranous bone formation in an adult animal. The digit tip is composed of skin, nerves, blood vessels, bones, and tendons, all of which regenerate after digit tip amputation, making it a powerful model for multi-tissue regeneration. Bone integrity relies upon a balanced remodeling between bone resorption and formation, which, when disrupted, results in changes to bone architecture and biomechanics, particularly during aging.

View Article and Find Full Text PDF

Unlabelled: Studies on symptomatic osteoarthritis suggest that Black patients report worse pain and symptoms compared with White patients with osteoarthritis. In this study, we aimed to quantify the relationship among variables such as overall health and socioeconomic status that may contribute to disparities in patient-reported outcomes.

Methods: A total of 223 patients were enrolled.

View Article and Find Full Text PDF

This study tests if differences exist in the severity of synovial fibrosis between patients undergoing total knee arthroplasty (TKA) for osteoarthritis (OA) to help explain disparate deficits in pre- and postoperative range of motion (ROM) between patient groups. 117 knee OA patients were grouped by women (n = 74) and men (n = 43) or those who self-reported as Black (n = 48) or White (n = 69). ROM was measured pre- and post-TKA.

View Article and Find Full Text PDF

The recent COVID-19 pandemic has brought attention to cytokines and the phenomenon of cytokine storm into mainstream discussions. In this disease specifically, a cytokine storm overwhelming immune response contributes to the pathophysiology and mortality of the COVID-19 infection. Analogous perturbed immune reactions are experienced in polytrauma patients, compromising local tissue healing while threatening multiple organ systems.

View Article and Find Full Text PDF

Bone regeneration is a critical area of research impacting treatment of diseases such as osteoporosis, age-related decline, and orthopaedic implants. A crucial question in bone regeneration is that of bone architectural quality, or how "good" is the regenerated bone tissue structurally? Current methods address typical long bone architecture, however there exists a need for improved ability to quantify structurally relevant parameters of bone in non-standard bone shapes. Here we present a new analysis approach based on open-source semi-automatic methods combining image processing, solid modeling, and numerical calculations to analyze bone tissue at a more granular level using μCT image data from a mouse digit model of bone regeneration.

View Article and Find Full Text PDF

While mammals tend to repair injuries, other adult vertebrates like salamanders and fish regenerate damaged tissue. One prominent hypothesis offered to explain an inability to regenerate complex tissue in mammals is a bias during healing toward strong adaptive immunity and inflammatory responses. Here we directly test this hypothesis by characterizing part of the immune response during regeneration in spiny mice ( and ) vs.

View Article and Find Full Text PDF

The mitochondrial deacetylase sirtuin 3 (SIRT3) is thought to be one of the main contributors to metabolic flexibility-promoting mitochondrial energy production and maintaining homeostasis. In bone, metabolic profiles are tightly regulated and the loss of SIRT3 has deleterious effects on bone volume in vivo and on osteoblast differentiation in vitro. Despite the prominent role of this protein in bone stem cell proliferation, metabolic activity, and differentiation, the importance of SIRT3 for regeneration after bone injury has never been reported.

View Article and Find Full Text PDF

Despite approaches in regenerative medicine using stem cells, bio-engineered scaffolds, and targeted drug delivery to enhance human tissue repair, clinicians remain unable to regenerate large-scale, multi-tissue defects in situ. The study of regenerative biology using mammalian models of complex tissue regeneration offers an opportunity to discover key factors that stimulate a regenerative rather than fibrotic response to injury. For example, although primates and rodents can regenerate their distal digit tips, they heal more proximal amputations with scar tissue.

View Article and Find Full Text PDF

In mammals, macrophages are known to play a major role in tissue regeneration. They contribute to inflammation, histolysis, re-epithelialization, revascularization and cell proliferation. Macrophages have been shown to be essential for regeneration in salamanders and fish, but their role has not been elucidated in mammalian epimorphic regeneration.

View Article and Find Full Text PDF

The regeneration blastema which forms following amputation of the mouse digit tip is composed of undifferentiated cells bound together by an organized network of fibers. A monoclonal antibody (ER-TR7) that identifies extracellular matrix (ECM) fibers produced by fibroblast reticular cells during lymphoid organogenesis was used to characterize the ECM of the digit, the blastema, and the regenerate. Digit fibroblast reticular cells produce an ER-TR7 ECM network associated with different tissues and represent a subset of loose connective tissue fibroblasts.

View Article and Find Full Text PDF

How the immune system affects tissue regeneration is not well understood. In this study, we used an emerging mammalian model of epimorphic regeneration, the African spiny mouse, to examine cell-based inflammation and tested the hypothesis that macrophages are necessary for regeneration. By directly comparing inflammatory cell activation in a 4 mm ear injury during regeneration () and scarring (), we found that both species exhibited an acute inflammatory response, with scarring characterized by stronger myeloperoxidase activity.

View Article and Find Full Text PDF

Experimental models of spinal cord injury (SCI) typically utilize contusion or compression injuries. Clinically, however, SCI is heterogeneous and the primary injury mode may affect secondary injury progression and neuroprotective therapeutic efficacy. Specifically, immunomodulatory agents are of therapeutic interest because the activation state of SCI macrophages may facilitate pathology but also improve repair.

View Article and Find Full Text PDF

Regeneration of amputated structures is severely limited in humans and mice, with complete regeneration restricted to the distal portion of the terminal phalanx (P3). Here, we investigate the dynamic tissue repair response of the second phalangeal element (P2) post amputation in the adult mouse, and show that the repair response of the amputated bone is similar to the proximal P2 bone fragment in fracture healing. The regeneration-incompetent P2 amputation response is characterized by periosteal endochondral ossification resulting in the deposition of new trabecular bone, corresponding to a significant increase in bone volume; however, this response is not associated with bone lengthening.

View Article and Find Full Text PDF

Urodele amphibians are unique among adult vertebrates in their ability to regenerate complex body structures after traumatic injury. In salamander regeneration, the cells maintain a memory of their original position and use this positional information to recreate the missing pattern. We used an in vivo gain-of-function assay to determine whether components of the extracellular matrix (ECM) have positional information required to induce formation of new limb pattern during regeneration.

View Article and Find Full Text PDF

Purpose To examine whether cardiac chemical exchange saturation transfer (CEST) imaging can be serially and noninvasively used to probe cell survival or rejection after intramyocardial implantation in mice. Materials and Methods Experiments were compliant with the National Institutes of Health Guidelines on the Use of Laboratory Animals and approved by the Institutional Animal Care and Use Committee. One million C2C12 cells labeled with either europium (Eu) 10-(2-hydroxypropyl)-1,4,7-tetraazacyclododecane-1,4,7-triacetic acid (HP-DO3A) or saline via the hypotonic swelling technique were implanted into the anterior-lateral left ventricular wall in C57BL/6J (allogeneic model, n = 17) and C3H (syngeneic model, n = 13) mice.

View Article and Find Full Text PDF

Why mammals have poor regenerative ability has remained a long-standing question in biology. In regenerating vertebrates, injury can induce a process known as epimorphic regeneration to replace damaged structures. Using a 4-mm ear punch assay across multiple mammalian species, here we show that several Acomys spp.

View Article and Find Full Text PDF

Oxygen is critical for optimal bone regeneration. While axolotls and salamanders have retained the ability to regenerate whole limbs, mammalian regeneration is restricted to the distal tip of the digit (P3) in mice, primates, and humans. Our previous study revealed the oxygen microenvironment during regeneration is dynamic and temporally influential in building and degrading bone.

View Article and Find Full Text PDF

Mammalian digit regeneration progresses through consistent stages: histolysis, inflammation, epidermal closure, blastema formation, and finally redifferentiation. What we do not yet know is how each stage can affect others. Questions of stage timing, tissue interactions, and microenvironmental states are becoming increasingly important as we look toward solutions for whole limb regeneration.

View Article and Find Full Text PDF

In the mouse, digit tip regeneration progresses through a series of discrete stages that include inflammation, histolysis, epidermal closure, blastema formation, and redifferentiation. Recent studies reveal how each regenerative stage influences subsequent stages to establish a blastema that directs the successful regeneration of a complex mammalian structure. The focus of this review is on early events of healing and how an amputation wound transitions into a functional blastema.

View Article and Find Full Text PDF

The regenerating mouse digit tip is a unique model for investigating blastema formation and epimorphic regeneration in mammals. The blastema is characteristically avascular and we previously reported that blastema expression of a known anti-angiogenic factor gene, Pedf, correlated with a successful regenerative response (Yu, L., Han, M.

View Article and Find Full Text PDF