Publications by authors named "Jennifer S Sparks"

Positive-strand RNA viruses induce modifications of cytoplasmic membranes to form replication complexes. For coronaviruses, replicase nonstructural protein 4 (nsp4) has been proposed to function in the formation and organization of replication complexes. Murine hepatitis virus (MHV) nsp4 is glycosylated at residues Asn176 (N176) and N237 during plasmid expression of nsp4 in cells.

View Article and Find Full Text PDF

Sequencing and reversion analysis of murine hepatitis virus (MHV) temperature-sensitive (ts) viruses has identified putative ts mutations in the replicase nonstructural proteins (nsp's) of these coronaviruses. In this study, reverse transcriptase PCR sequencing of the RNA genome of an isolate of the MHV ts virus Alb ts6, referred to as Alb/ts/nsp5/V148A, identified a putative ts mutation in nsp5 (T10651C, Val148Ala), the viral 3C-like proteinase (3CLpro). The introduction of the T10651C mutation into the infectious MHV clone resulted in the recovery of a mutant virus, the nsp5/V148A virus, that demonstrated reduced growth and nsp5 proteinase activity identical to that of Alb/ts/nsp5/V148A at the nonpermissive temperature.

View Article and Find Full Text PDF

Coronavirus replicase polyproteins are translated from the genomic positive-strand RNA and are proteolytically processed by three viral proteases to yield 16 mature nonstructural proteins (nsp1 to nsp16). nsp4 contains four predicted transmembrane-spanning regions (TM1, -2, -3, and -4), demonstrates characteristics of an integral membrane protein, and is thought to be essential for the formation and function of viral replication complexes on cellular membranes. To determine the requirement of nsp4 for murine hepatitis virus (MHV) infection in culture, engineered deletions and mutations in TMs and intervening soluble regions were analyzed for effects on virus recovery, growth, RNA synthesis, protein expression, and intracellular membrane modifications.

View Article and Find Full Text PDF

Much progress has been made in understanding the role of structural and accessory proteins in the pathogenesis of severe acute respiratory syndrome coronavirus (SARS-CoV) infections. The SARS epidemic also brought new attention to the proteins translated from ORF1a and ORF1b of the input genome RNA, also known as the replicase/transcriptase gene. Evidence for change within the ORF1ab coding sequence during the SARS epidemic, as well as evidence from studies with other coronaviruses, indicates that it is likely that the ORF1ab proteins play roles in virus pathogenesis distinct from or in addition to functions directly involved in viral replication.

View Article and Find Full Text PDF