We report innovative scalable, vertical, ultra-sharp nanowire arrays that are individually addressable to enable long-term, native recordings of intracellular potentials. Stable amplitudes of intracellular potentials from 3D tissue-like networks of neurons and cardiomyocytes are obtained. Individual electrical addressability is necessary for high-fidelity intracellular electrophysiological recordings.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) has been explored as a therapeutic strategy to clear toxic amyloid aggregates involved in neurodegenerative disorders such as Alzheimer's disease. A major limitation of PDT is off-target oxidation, which can be lethal for the surrounding cells. We have shown that a novel class of oligo--phenylene ethynylenes (OPEs) exhibit selective binding and fluorescence turn-on in the presence of prefibrillar and fibrillar aggregates of disease-relevant proteins such as amyloid-β (Aβ) and α-synuclein.
View Article and Find Full Text PDFWe report a critical advance in the generation and characterization of peptoid hetero-oligomers. A library of sub-monomers with amine and carboxylate side-chains are combined in different sequences using microwave-assisted synthesis. Their sequence-structure propensity is confirmed by circular dichroism, and conformer subtypes are enumerated by NMR.
View Article and Find Full Text PDFBiocompatible nanoparticles composed of poly(lactic-co-glycolic acid) (PLGA) are used as drug and vaccine delivery systems because of their tunability in size and sustained release of cargo molecules. While the use of toxic stabilizers such as polyvinyl alcohol (PVA) limit the utility of PLGA, stabilizer-free PLGA nanoparticles are rarely used because they can be challenging to prepare. Here, we developed a tunable, stabilizer-free PLGA nanoparticle formulation capable of encapsulating plasmid DNA and demonstrated the formation of an elastin-like polymer PLGA hybrid nanoparticle with exceptional stability and biocompatibility.
View Article and Find Full Text PDFPolystyrene--polyethylene glycol (PS--PEG) amphiphilic block copolymers featuring a terminal tridentate -ligand (terpyridine) were synthesized for the first time through an efficient route. In this approach, telechelic chain-end modified polystyrenes were produced via reversible addition-fragmentation chain-transfer (RAFT) polymerization by using terpyridine trithiocarbonate as the chain-transfer agent, after which the hydrophilic polyethylene glycol (PEG) block was incorporated into the hydrophobic polystyrene (PS) block in high yields via a thiol-ene process. Following metal-coordination with Mn, Fe, Ni, and Zn, the resulting metallo-polymers were self-assembled into spherical, vesicular nanostructures, as characterized by dynamic light scattering and transmission electron microscopy (TEM) imaging.
View Article and Find Full Text PDFMetal nanoclusters containing a few to several hundred atoms with sizes ranging from sub-nanometer to ∼2 nm occupy an intermediate size regime that bridges larger plasmonic nanoparticles and smaller metal complexes. With strong quantum confinement, metal nanoclusters exhibit molecule-like properties. This Account focuses on noble metal nanoclusters that are synthesized within a single stranded DNA template.
View Article and Find Full Text PDFProtein-ligand conjugations are usually carried out in aqueous media in order to mimic the environment within which the conjugates will be used. In this work, we focus on the conjugation of amphiphilic variants of elastin-like polypeptide (ELP), short elastin (sEL), to poorly water-soluble compounds like OPPVs ( p-phenylenevinylene oligomers), triarylamines, and polypyridine-metal complexes. These conjugations are problematic when carried out in aqueous phase because hydrophobic ligands tend to avoid exposure to water, which in turn causes the ligand to self-aggregate and/or interact noncovalently with hydrophobic regions of the amphiphile.
View Article and Find Full Text PDFAn optically active metallo-polymer assembly is demonstrated via conjugation of a genetically engineered elastin-like polypeptide (ELP) and a ruthenium(II) polypyridyl complex. By taking advantage of the phase transition of ELPs in water, photophysical properties of the resultant conjugate are investigated for both phases, below and above the critical transition temperature. Upon coacervation, the luminescence of the metallo-ELP is greatly enhanced as a consequence of local effects on the metal-ligand luminophore.
View Article and Find Full Text PDFChromosome ends are shielded from exonucleolytic attack and inappropriate end-joining by terminal structures called telomeres; these structures are potential targets for anticancer drugs. Telomeres are composed of a simple DNA sequence (5?-TTAGGG-3? in humans) repeated more than a thousand times, a short 3? single-stranded overhang, and numerous proteins. Electron microscopy has shown that the 3? overhang pairs with the complementary strand at an internal site creating a small displacement loop and a large double-stranded “t-loop.
View Article and Find Full Text PDFPeptides are important affinity ligands for microscopy, biosensing, and targeted delivery. However, because they can have low affinity for their targets, their selection from large naïve libraries can be challenging. When selecting peptidic ligands from display libraries, it is important to: 1) ensure efficient display; 2) maximize the ability to select high affinity ligands; and 3) minimize the effect of the display context on binding.
View Article and Find Full Text PDFBiopolymer-based optical hydrogels represent an emerging class of materials with potential applications in biocompatible integrated optoelectronic devices, bioimaging applications, and stretchable/flexible photonics. We have synthesized stimuli-responsive three-dimensional hydrogels from genetically engineered elastin-like polymers (ELPs) and have loaded these hydrogels with an amine-containing -phenylenevinylene oligomer (OPPV) derivative featuring highly tunable, environmentally sensitive optical properties. The composite ELP/OPPV hydrogels exhibit both pH- and temperature-dependent fluorescence emission, from which we have characterized a unique optical behavior that emerged from OPPV within the hydrogel environment.
View Article and Find Full Text PDFWe report the synthesis and characterization of a new DNA-templated gold nanocluster (AuNC) of ∼1 nm in diameter and possessing ∼7 Au atoms. When integrated with bilirubin oxidase (BOD) and single walled carbon nanotubes (SWNTs), the AuNC acts as an enhancer of electron transfer (ET) and lowers the overpotential of electrocatalytic oxygen reduction reaction (ORR) by ∼15 mV as compared to the enzyme alone. In addition, the presence of AuNC causes significant enhancements in the electrocatalytic current densities at the electrode.
View Article and Find Full Text PDFWater-soluble cationic conjugated poly(phenylene vinylene) (PPV) and cationic fullerene were complexed with negatively charged single stranded DNA and double stranded DNA via electrostatic interactions to achieve photoinduced charge transfer with efficiencies as high as those observed from oppositely charged, cationic PPV and anionic fullerene but with distinctly different quenching mechanisms.
View Article and Find Full Text PDFA series of fluorescent unnatural amino acids (UAAs) bearing stilbene and -phenylenevinylene (-PPV) backbone have been synthesized and their optical properties were studied. These novel UAAs were derived from protected diiodo-l-tyrosine using palladium-catalyzed Heck couplings with a series of styrene analogs. Unlike the other fluorescent UAAs, whose emissions are restricted to a narrow range of wavelengths, these new amino acids display the emission peaks at broad range wavelengths (from 400-800 nm); including NIR with QY of 4% in HEPES buffer.
View Article and Find Full Text PDFPolythiophene and its derivatives have shown tremendous potential for interfacing electrically conducting polymers with biological applications. These semiconducting organic polymers are relatively soft, conduct electrons and ions, have low cytotoxicity, and can undergo facile chemical modifications. In addition, the reduction in electrical impedance of electrodes coated with polythiophenes may prove to be invaluable for a stable and permanent connection between devices and biological tissues.
View Article and Find Full Text PDFA series of PPVO (p-phenylene vinylene oligomer) derivatives with functional groups of varying electronegativity were synthesized via the Horner-Wadsworth-Emmons reaction. Subtle changes in the end group functionality significantly impact the molecular electronic and optical properties of the PPVOs, resulting in broadly tunable and efficient UV absorption and photoluminescence spectra. Of particular interest is the NO2-substituted PPVO which exhibits photoluminescence color ranging from the blue to the red, thus encompassing the entire visible spectrum.
View Article and Find Full Text PDFWe report that terahertz (THz) irradiation of mouse mesenchymal stem cells (mMSCs) with a single-frequency (SF) 2.52 THz laser or pulsed broadband (centered at 10 THz) source results in irradiation specific heterogenic changes in gene expression. The THz effect depends on irradiation parameters such as the duration and type of THz source, and on the degree of stem cell differentiation.
View Article and Find Full Text PDFRapid and precise screening of small genetic variations, such as single-nucleotide polymorphisms (SNPs), among an individual's genome is still an unmet challenge at point-of-care settings. One crucial step toward this goal is the development of discrimination probes that require no enzymatic reaction and are easy to use. Here we report a new type of fluorescent molecular probe, termed a chameleon NanoCluster Beacon (cNCB), that lights up into different colors upon binding SNP targets.
View Article and Find Full Text PDFMetal nanoclusters have interesting steady state fluorescence emission, two-photon excited emission and ultrafast dynamics. A new subclass of fluorescent silver nanoclusters (Ag NCs) are NanoCluster Beacons. NanoCluster Beacons consist of a weakly emissive Ag NC templated on a single stranded DNA ("Ag NC on ssDNA") that becomes highly fluorescent when a DNA enhancer sequence is brought in proximity to the Ag NC by DNA base pairing ("Ag NC on dsDNA").
View Article and Find Full Text PDFWe report the discovery of a DNA sequence that templates a highly stable fluorescent silver nanocluster. In contrast to other DNA templated silver nanoclusters that have a relatively short shelf-life, the fluorescent species templated in this new DNA sequence retains significant fluorescence for at least a year. Moreover, this new silver nanocluster possesses low cellular toxicity and enhanced thermal, oxidative, and chemical stability.
View Article and Find Full Text PDFThe Escherichia coli RecA protein is a naturally aggregated protein complex that is affected by the presence of salts. In order to gain further insight into the nature of the ion-interactions on a naturally aggregating protein we used circular dichroism (CD), fluorescence and dynamic light scattering (DLS) to study the effects of different concentrations of MgCl2, CaCl2, NaCl, Na2SO4, and MgSO4 on RecA structure and thermal unfolding. The results show unique ion influences on RecA structure, aggregation, unfolding transitions and stability and the anion effects correlate with the reverse Hofmeister series.
View Article and Find Full Text PDFIn recent years, terahertz radiation sources are increasingly being exploited in military and civil applications. However, only a few studies have so far been conducted to examine the biological effects associated with terahertz radiation. In this study, we evaluated the cellular response of mesenchymal mouse stem cells exposed to THz radiation.
View Article and Find Full Text PDFDNA-templated silver nanoclusters are promising biological fluorescence probes due to their useful fluorescence properties, including tunability of emission wavelength through DNA template sequence variations. Ag K-edge EXAFS analysis of DNA-templated silver nanoclusters has been used to obtain insight into silver nanocluster bonding, size, and structural correlations to fluorescence. The results indicate the presence of small silver nanoclusters (<30 silver atoms) containing Ag-Ag bonds and Ag-N/O ligations to DNA.
View Article and Find Full Text PDFWe report that extended exposure to broad-spectrum terahertz radiation results in specific changes in cellular functions that are closely related to DNA-directed gene transcription. Our gene chip survey of gene expression shows that whereas 89% of the protein coding genes in mouse stem cells do not respond to the applied terahertz radiation, certain genes are activated, while other are repressed. RT-PCR experiments with selected gene probes corresponding to transcripts in the three groups of genes detail the gene specific effect.
View Article and Find Full Text PDF