Publications by authors named "Jennifer S Grant"

Dysregulation of microRNAs (miRNAs) can contribute to the etiology of diseases, including pulmonary arterial hypertension (PAH). Here we investigated a potential role for the miR-214 stem loop miRNA and the closely linked miR-199a miRNAs in PAH. All 4 miRNAs were upregulated in the lung and right ventricle (RV) in mice and rats exposed to the Sugen (SU) 5416 hypoxia model of PAH.

View Article and Find Full Text PDF

MicroRNAs are small noncoding RNAs involved in the regulation of gene expression and have recently been implicated in the development of pulmonary arterial hypertension (PAH). Previous work has established that miR-451 is upregulated in rodent models of PAH. The role of miR-451 in the pulmonary circulation is unknown.

View Article and Find Full Text PDF

Renal tubulointerstitial fibrosis is the common end point of progressive renal disease. MicroRNA (miR)-214 and miR-21 are upregulated in models of renal injury, but the function of miR-214 in this setting and the effect of its manipulation remain unknown. We assessed the effect of inhibiting miR-214 in an animal model of renal fibrosis.

View Article and Find Full Text PDF

Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH.

View Article and Find Full Text PDF