Magneto/electro-encephalography (M/EEG) source connectivity is an emerging approach to estimate brain networks with high temporal and spatial resolutions. Here, we aim to evaluate the effect of functional connectivity (FC) methods on the correlation between M/EEG source-space and fMRI networks at rest. Two main FC families are tested: (i) FC methods that do not remove zero-lag connectivity including Phase Locking Value (PLV) and Amplitude Envelope Correlation (AEC) and (ii) FC methods that remove zero-lag connections such as Phase Lag Index (PLI) and two orthogonalisation approaches combined with PLV (PLV, PLV) and AEC (AEC, AEC).
View Article and Find Full Text PDFIncreasing evidence links disorders of consciousness (DOC) with disruptions in functional connectivity between distant brain areas. However, to which extent the balance of brain network segregation and integration is modified in DOC patients remains unclear. Using high-density electroencephalography (EEG), the objective of our study was to characterize the local and global topological changes of DOC patients' functional brain networks.
View Article and Find Full Text PDF