Data Integrity (DI) in the highly regulated biopharmaceutical sector is of paramount importance to ensure decisions on meeting product specifications are accurate and hence assure patient safety and product quality. The challenge of ensuring DI within this sector is becoming more complex with the growing amount of data generated given increasing adoption of process analytical technology (PAT), advanced automation, high throughput microscale studies, and managing data models created by machine learning (ML) tools. This paper aims to identify DI risks and mitigation strategies in biopharmaceutical manufacturing facilities as the sector moves towards Industry 4.
View Article and Find Full Text PDF