Publications by authors named "Jennifer Reiber Kyle"

We describe the fabrication of highly conductive and large-area three dimensional pillared graphene nanostructure (PGN) films from assembly of vertically aligned CNT pillars on flexible copper foils for applications in electric double layer capacitors (EDLC). The PGN films synthesized via a one-step chemical vapor deposition process on flexible copper foils exhibit high conductivity with sheet resistance as low as 1.6 ohms per square and possessing high mechanical flexibility.

View Article and Find Full Text PDF

Graphene is an allotrope of carbon whose structure is based on one-atom-thick planar sheets of carbon atoms that are densely packed in a honeycomb crystal lattice. Its unique electrical and optical properties raised worldwide interest towards the design and fabrication of future electronic and optical devices with unmatched performance. At the moment, extensive efforts are underway to evaluate the reliability and performance of a number of such devices.

View Article and Find Full Text PDF

We studied the photodesorption behavior of pristine and nitric acid (HNO(3)) treated graphene layers fabricated by chemical vapor deposition (CVD). The decrease in electrical conductivity and a negative shift of the Dirac point in graphene layers illuminated with ultraviolet light are caused by molecular photodesorption, while the UV illumination does not degrade the carrier mobility of graphene layers. When graphene layers were treated with concentrated HNO(3), the photodesorption-induced current decrease became less significant than for pristine graphene layers.

View Article and Find Full Text PDF

A high-throughput metrology method for measuring the thickness and uniformity of entire large-area chemical vapor deposition-grown graphene sheets on arbitrary substrates is demonstrated. This method utilizes the quenching of fluorescence by graphene via resonant energy transfer to increase the visibility of graphene on a glass substrate. Fluorescence quenching is visualized by spin-coating a solution of polymer mixed with fluorescent dye onto the graphene then viewing the sample under a fluorescence microscope.

View Article and Find Full Text PDF

In this paper we introduce a custom scanning near-field optical microscope (SNOM) that simultaneously collects reflection and transmission near-field images along with topography. This dual-optical SNOM uses a bent probe, which allows for axial reflection imaging, accurate surface scanning, and easy identification of topographic artifacts. Using this novel dual-optical SNOM, we image desiccated and non-desiccated human breast epithelial tissue.

View Article and Find Full Text PDF

Particles to the rescue! The construction of cationic amino acid motifs on the surface of bacteriophage Qbeta by genetic engineering or chemical conjugation gives particles that are potent inhibitors of the anticoagulant action of heparin, which is a common anticlotting agent subject to clinical overdose.Polyvalent interactions allow biological structures to exploit low-affinity ligand-receptor binding events to affect physiological responses. We describe here the use of bacteriophage Qbeta as a multivalent platform for the display of polycationic motifs that act as heparin antagonists.

View Article and Find Full Text PDF