Mortality due to breast cancer is increasingly linked to early, undetected metastasis, making methods for earlier detection acutely necessary. We describe the development of an assay based on molecular beacon (MB) chemistry with fluorescence detection to monitor a breast cancer biomarker for the analysis of breast cancer metastasis. The MB assay is based on the complementary base-pairing interactions of the MB nucleic acid with mRNA indicative of breast cancer metastasis.
View Article and Find Full Text PDFA naturally occurring aptazyme, the glmS ribozyme, is adapted to an assay for glucosamine 6-phosphate, an effector molecule for the aptazyme. In the assay, binding of analyte allosterically activates aptazyme to cleave a fluorescently labeled oligonucleotide substrate. The extent of reaction, and hence analyte concentration, is detected by either fluorescence resonance energy transfer (FRET) or capillary electrophoresis with laser-induced fluorescence (CE-LIF).
View Article and Find Full Text PDFA recently discovered class of gene regulatory RNAs, coined riboswitches, are commonly found in noncoding segments of bacterial and some eukaryotic mRNAs. Gene up- or down-regulation is triggered by binding of a small organic metabolite, which typically induces an RNA conformational change. Unique among these noncoding RNAs is the glmS catalytic riboswitch, or ribozyme, found in the 5'-untranslated region of the glmS gene in Gram-positive bacteria.
View Article and Find Full Text PDF